Cellular mechanisms of exogenous peptide binding to HLA class II molecules in B cells

G. Frumento, D. De Totero, G. B. Ferrara, A. Chersi, B. Pernis

Research output: Contribution to journalArticlepeer-review


We have investigated the ability of APC Class II molecules to bind and release exogenous peptides, two phenomena that are still poorly understood. In order to investigate the half-life of the complex of an exogenous peptide with DR molecules we have evaluated the uptake and release of the radiolabeled peptide 17-29-Tyr of influenza virus matrix protein (MA 17-29-Y) by a B-EBV cell line at different times and under different conditions. We have found that the kinetics of both binding and release of the peptide are very fast in living cells; using glutaraldehyde-fixed cells, the kinetics of the two phenomena are slow, closely resembling those observed with the same peptide and purified, immobilized DR molecules. As confirmed by the study of a specific T-cell clone activation, the Class II-MA 17-29-Y complexes are short-living ones, with an average half-life of 55 min, and the DR molecules that bind exogenous peptides continuously undergo peptidic exchange. These data, taken together, suggest that the APC are endowed with cellular mechanisms that increase the efficiency of both the loading and the unloading of Class II HLA with exogenous peptides. These mechanisms do not appear to require ATP or to involve newly synthesized Class II molecules, intracellular acidic compartments, or the microtubule-microfilament system. On the other hand, an undamaged cell membrane appears to be crucial for an efficient binding.

Original languageEnglish
Pages (from-to)1-10
Number of pages10
JournalCellular Immunology
Issue number1
Publication statusPublished - 1994

ASJC Scopus subject areas

  • Cell Biology
  • Immunology


Dive into the research topics of 'Cellular mechanisms of exogenous peptide binding to HLA class II molecules in B cells'. Together they form a unique fingerprint.

Cite this