Cerebellar Transcranial Direct Current Stimulation (tDCS), Leaves Virtual Navigation Performance Unchanged

Roberta Ferrucci, Silvia Serino, Fabiana Ruggiero, Claudia Repetto, Desirée Colombo, Elisa Pedroli, Sara Marceglia, Giuseppe Riva, Alberto Priori

Research output: Contribution to journalArticle

Abstract

Spatial cognition is an umbrella term used to refer to the complex set of abilities necessary to encode, categorize, and use spatial information from the surrounding environment to move effectively and orient within it. Experimental studies indicate that the cerebellum belongs to the neural network involved in spatial cognition, although its exact role in this function remains unclear. Our aim was to investigate in a pilot study using a virtual reality navigation task in healthy subjects whether cerebellar transcranial direct current stimulation (tDCS), a non-invasive technique, influences spatial navigation. Forty healthy volunteers (24 women; age range = 20-42 years; years of education range 13-18) were recruited. The virtual reality spatial navigation task comprised two phases: encoding, in which participants actively navigated the environment and learned the spatial locations for one object, and retrieval, in which they retrieved the position of the object they had discovered and memorized in the previous encoding phase, starting from another starting point. Participants received tDCS stimulation (anodal or sham according to the experimental condition they were assigned to) for 20 min before beginning the retrieval phase. Our results showed that cerebellar tDCS left the accuracy of the three indexes used to measure effective navigational abilities unchanged. Hence, cerebellar tDCS had no influence on the retrieval phase for the spatial maps stored. Further studies, enrolling a larger sample and testing a different stimulation protocol, may give a greater insight into the role of the cerebellum in spatial navigation.

Original languageEnglish
Article number198
JournalFrontiers in Neuroscience
Volume13
DOIs
Publication statusPublished - 2019

Fingerprint

Aptitude
Cerebellum
Cognition
Healthy Volunteers
Education
Transcranial Direct Current Stimulation
Spatial Navigation

Cite this

@article{d691f6d359bb4f8ea6229aafb5a3295f,
title = "Cerebellar Transcranial Direct Current Stimulation (tDCS), Leaves Virtual Navigation Performance Unchanged",
abstract = "Spatial cognition is an umbrella term used to refer to the complex set of abilities necessary to encode, categorize, and use spatial information from the surrounding environment to move effectively and orient within it. Experimental studies indicate that the cerebellum belongs to the neural network involved in spatial cognition, although its exact role in this function remains unclear. Our aim was to investigate in a pilot study using a virtual reality navigation task in healthy subjects whether cerebellar transcranial direct current stimulation (tDCS), a non-invasive technique, influences spatial navigation. Forty healthy volunteers (24 women; age range = 20-42 years; years of education range 13-18) were recruited. The virtual reality spatial navigation task comprised two phases: encoding, in which participants actively navigated the environment and learned the spatial locations for one object, and retrieval, in which they retrieved the position of the object they had discovered and memorized in the previous encoding phase, starting from another starting point. Participants received tDCS stimulation (anodal or sham according to the experimental condition they were assigned to) for 20 min before beginning the retrieval phase. Our results showed that cerebellar tDCS left the accuracy of the three indexes used to measure effective navigational abilities unchanged. Hence, cerebellar tDCS had no influence on the retrieval phase for the spatial maps stored. Further studies, enrolling a larger sample and testing a different stimulation protocol, may give a greater insight into the role of the cerebellum in spatial navigation.",
author = "Roberta Ferrucci and Silvia Serino and Fabiana Ruggiero and Claudia Repetto and Desir{\'e}e Colombo and Elisa Pedroli and Sara Marceglia and Giuseppe Riva and Alberto Priori",
year = "2019",
doi = "10.3389/fnins.2019.00198",
language = "English",
volume = "13",
journal = "Frontiers in Neuroscience",
issn = "1662-4548",
publisher = "Frontiers Media S.A.",

}

TY - JOUR

T1 - Cerebellar Transcranial Direct Current Stimulation (tDCS), Leaves Virtual Navigation Performance Unchanged

AU - Ferrucci, Roberta

AU - Serino, Silvia

AU - Ruggiero, Fabiana

AU - Repetto, Claudia

AU - Colombo, Desirée

AU - Pedroli, Elisa

AU - Marceglia, Sara

AU - Riva, Giuseppe

AU - Priori, Alberto

PY - 2019

Y1 - 2019

N2 - Spatial cognition is an umbrella term used to refer to the complex set of abilities necessary to encode, categorize, and use spatial information from the surrounding environment to move effectively and orient within it. Experimental studies indicate that the cerebellum belongs to the neural network involved in spatial cognition, although its exact role in this function remains unclear. Our aim was to investigate in a pilot study using a virtual reality navigation task in healthy subjects whether cerebellar transcranial direct current stimulation (tDCS), a non-invasive technique, influences spatial navigation. Forty healthy volunteers (24 women; age range = 20-42 years; years of education range 13-18) were recruited. The virtual reality spatial navigation task comprised two phases: encoding, in which participants actively navigated the environment and learned the spatial locations for one object, and retrieval, in which they retrieved the position of the object they had discovered and memorized in the previous encoding phase, starting from another starting point. Participants received tDCS stimulation (anodal or sham according to the experimental condition they were assigned to) for 20 min before beginning the retrieval phase. Our results showed that cerebellar tDCS left the accuracy of the three indexes used to measure effective navigational abilities unchanged. Hence, cerebellar tDCS had no influence on the retrieval phase for the spatial maps stored. Further studies, enrolling a larger sample and testing a different stimulation protocol, may give a greater insight into the role of the cerebellum in spatial navigation.

AB - Spatial cognition is an umbrella term used to refer to the complex set of abilities necessary to encode, categorize, and use spatial information from the surrounding environment to move effectively and orient within it. Experimental studies indicate that the cerebellum belongs to the neural network involved in spatial cognition, although its exact role in this function remains unclear. Our aim was to investigate in a pilot study using a virtual reality navigation task in healthy subjects whether cerebellar transcranial direct current stimulation (tDCS), a non-invasive technique, influences spatial navigation. Forty healthy volunteers (24 women; age range = 20-42 years; years of education range 13-18) were recruited. The virtual reality spatial navigation task comprised two phases: encoding, in which participants actively navigated the environment and learned the spatial locations for one object, and retrieval, in which they retrieved the position of the object they had discovered and memorized in the previous encoding phase, starting from another starting point. Participants received tDCS stimulation (anodal or sham according to the experimental condition they were assigned to) for 20 min before beginning the retrieval phase. Our results showed that cerebellar tDCS left the accuracy of the three indexes used to measure effective navigational abilities unchanged. Hence, cerebellar tDCS had no influence on the retrieval phase for the spatial maps stored. Further studies, enrolling a larger sample and testing a different stimulation protocol, may give a greater insight into the role of the cerebellum in spatial navigation.

U2 - 10.3389/fnins.2019.00198

DO - 10.3389/fnins.2019.00198

M3 - Article

C2 - 30914915

VL - 13

JO - Frontiers in Neuroscience

JF - Frontiers in Neuroscience

SN - 1662-4548

M1 - 198

ER -