Abstract
Original language | English |
---|---|
Pages (from-to) | 133-140 |
Number of pages | 8 |
Journal | Neurobiol. Aging |
Volume | 76 |
DOIs | |
Publication status | Published - 2019 |
Keywords
- Biomarkers
- C9orf72
- Frontotemporal dementia
- GRN
- Transcranial magnetic stimulation
- adult
- Article
- brain atrophy
- brain tissue
- C9orf72 gene
- cognitive defect
- female
- follow up
- frontotemporal dementia
- gene
- gene mutation
- GRN gene
- heterozygote
- human
- major clinical study
- male
- middle aged
- neurotransmission
- priority journal
- tissue structure
- white matter lesion
- aged
- atrophy
- brain
- genetics
- mutation
- pathology
- pathophysiology
- psychology
- transcranial magnetic stimulation
- biological marker
- C9orf72 protein, human
- fungichromin
- GRN protein, human
- guanine nucleotide exchange C9orf72
- macrolide
- polyene
- Adult
- Aged
- Atrophy
- Brain
- C9orf72 Protein
- Female
- Frontotemporal Dementia
- Heterozygote
- Humans
- Macrolides
- Male
- Middle Aged
- Mutation
- Polyenes
- Progranulins
- Transcranial Magnetic Stimulation
Fingerprint
Dive into the research topics of 'Clinical and biomarker changes in presymptomatic genetic frontotemporal dementia: Neurobiology of Aging'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Clinical and biomarker changes in presymptomatic genetic frontotemporal dementia : Neurobiology of Aging. / Benussi, A.; Gazzina, S.; Premi, E. et al.
In: Neurobiol. Aging, Vol. 76, 2019, p. 133-140.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Clinical and biomarker changes in presymptomatic genetic frontotemporal dementia
T2 - Neurobiology of Aging
AU - Benussi, A.
AU - Gazzina, S.
AU - Premi, E.
AU - Cosseddu, M.
AU - Archetti, S.
AU - Dell'Era, V.
AU - Cantoni, V.
AU - Cotelli, M.S.
AU - Alberici, A.
AU - Micheli, A.
AU - Benussi, L.
AU - Ghidoni, R.
AU - Padovani, A.
AU - Borroni, B.
N1 - Cited By :6 Export Date: 10 February 2020 CODEN: NEAGD Correspondence Address: Borroni, B.; Clinica Neurologica, Università degli Studi di Brescia, P.le Spedali Civili 1, Italy; email: bborroni@inwind.it Chemicals/CAS: fungichromin, 6834-98-6; Biomarkers; C9orf72 Protein; C9orf72 protein, human; fungichromin; GRN protein, human; Macrolides; Polyenes; Progranulins Funding details: GR-2013-02357415 Funding text 1: This study was supported by grants from "AIRAlzh Onlus" and "ANCC-COOP" issued to VC; Italian Ministry of Health (Ricerca Corrente) issued to LB and RG; and partially supported by a grant from the Italian Ministry of Health (GR-2013-02357415) issued to MC. Authors' contribution: AB and BB designed the study. AB, SG, EP, MC, SA, VD, VC, MSC, AA, AM, LB, RG, AP, and BB recruited patients. AB, SG, EP, MC, and BB performed experiments and analyzed the data. AB, SG, EP, and BB evaluated the data and cowrote the article. AB, SG, EP, MC, SA, VD, VC, MSC, AA, AM, LB, RG, AP, and BB contributed to revising the article for intellectual content. Appendix A References: Bastos, A.M., Usrey, W.M., Adams, R.A., Mangun, G.R., Fries, P., Friston, K.J., Canonical microcircuits for predictive coding (2012) Neuron, 76, pp. 695-711; Bateman, R.J., Xiong, C., Benzinger, T.L.S., Fagan, A.M., Goate, A., Fox, N.C., Marcus, D.S., Morris, J.C., Clinical and biomarker changes in dominantly inherited Alzheimer's disease (2012) N. Engl. J. Med., 367, pp. 795-804; Benussi, A., Cosseddu, M., Filareto, I., Dell'Era, V., Archetti, S., Sofia Cotelli, M., Micheli, A., Borroni, B., Impaired long-term potentiation-like cortical plasticity in presymptomatic genetic frontotemporal dementia (2016) Ann. Neurol., 80, pp. 472-476; Benussi, A., Dell'Era, V., Cantoni, V., Ferrari, C., Caratozzolo, S., Rozzini, L., Alberici, A., Borroni, B., Discrimination of atypical parkinsonisms with transcranial magnetic stimulation (2018) Brain Stimul., 11, pp. 366-373; Benussi, A., Di Lorenzo, F., Dell'Era, V., Cosseddu, M., Alberici, A., Caratozzolo, S., Cotelli, M.S., Borroni, B., Transcranial magnetic stimulation distinguishes Alzheimer disease from frontotemporal dementia (2017) Neurology, 89, pp. 665-672; Benussi, A., Padovani, A., Borroni, B., Phenotypic heterogeneity of monogenic frontotemporal dementia (2015) Front. Aging Neurosci., 7, p. 171; Burrell, J.R., Hornberger, M., Vucic, S., Kiernan, M.C., Hodges, J.R., Apraxia and motor dysfunction in corticobasal syndrome (2014) PLoS One, 9, p. e92944; Burrell, J.R., Kiernan, M.C., Vucic, S., Hodges, J.R., Motor Neuron dysfunction in frontotemporal dementia (2011) Brain, 134, pp. 2582-2594; Ernst, T., Chang, L., Melchor, R., Mehringer, C.M., Frontotemporal dementia and early Alzheimer disease: differentiation with frontal lobe H-1 MR spectroscopy (1997) Radiology, 203, pp. 829-836; Farokhian, F., Beheshti, I., Sone, D., Matsuda, H., Comparing CAT12 and VBM8 for detecting brain morphological abnormalities in temporal lobe epilepsy (2017) Front. Neurol., 8, p. 428; Ferrer, I., Neurons and their dendrites in frontotemporal dementia (1999) Dement Geriatr. Cogn. Disord., 10, pp. 55-60; Frasson, E., Bertolasi, L., Bertasi, V., Fusina, S., Bartolomei, L., Vicentini, S., Rizzuto, N., Priori, A., Paired transcranial magnetic stimulation for the early diagnosis of corticobasal degeneration (2003) Clin. Neurophysiol., 114, pp. 272-278; Galimberti, D., Fumagalli, G.G., Fenoglio, C., Cioffi, S.M.G., Arighi, A., Serpente, M., Borroni, B., Scarpini, E., Progranulin plasma levels predict the presence of GRN mutations in asymptomatic subjects and do not correlate with brain atrophy: results from the GENFI study (2018) Neurobiol. Aging, 62. , 245.e9–245.e12; Gazzina, S., Benussi, A., Premi, E., Paternicò, D., Cristillo, V., Dell'Era, V., Cosseddu, M., Borroni, B., Neuroanatomical correlates of transcranial magnetic stimulation in presymptomatic granulin mutation carriers (2018) Brain Topogr., 31, pp. 488-497; Geevasinga, N., Menon, P., Nicholson, G.A., Ng, K., Howells, J., Kril, J.J., Yiannikas, C., Vucic, S., Cortical function in asymptomatic carriers and patients with C9orf72Amyotrophic lateral sclerosis (2015) JAMA Neurol., 72, p. 1268; Geschwind, D.H., Robidoux, J., Alarcón, M., Miller, B.L., Wilhelmsen, K.C., Cummings, J.L., Nasreddine, Z.S., Dementia and neurodevelopmental predisposition: cognitive dysfunction in presymptomatic subjects precedes dementia by decades in frontotemporal dementia (2001) Ann. Neurol., 50, pp. 741-746; Ghidoni, R., Benussi, L., Glionna, M., Franzoni, M., Binetti, G., Low plasma progranulin levels predict progranulin mutations in frontotemporal lobar degeneration (2008) Neurology, 71, pp. 1235-1239; Ghidoni, R., Stoppani, E., Rossi, G., Piccoli, E., Albertini, V., Paterlini, A., Glionna, M., Benussi, L., Optimal plasma progranulin cutoff value for predicting null progranulin mutations in neurodegenerative diseases: a multicenter Italian study (2012) Neurodegener. Dis., 9, pp. 121-127; Gorno-Tempini, M.L., Hillis, A.E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S.F., Ogar, J.M., Grossman, M., Classification of primary progressive aphasia and its variants (2011) Neurology, 76, pp. 1006-1014; Hughes, L.E., Ghosh, B.C.P., Rowe, J.B., Reorganisation of brain networks in frontotemporal dementia and progressive supranuclear palsy (2013) Neuroimage Clin., 2, pp. 459-468; Kujirai, T., Caramia, M.D., Rothwell, J.C., Day, B.L., Thompson, P.D., Ferbert, A., Wroe, S., Marsden, C.D., Corticocortical inhibition in human motor cortex (1993) J. Physiol., 471, pp. 501-519; Kurth, F., Gaser, C., Luders, E., A 12-step user guide for analyzing voxel-wise gray matter asymmetries in statistical parametric mapping (SPM) (2015) Nat. Protoc., 10, pp. 293-304; Le Ber, I., Camuzat, A., Hannequin, D., Pasquier, F., Guedj, E., Rovelet-Lecrux, A., Hahn-Barma, V., Brice, A., Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study (2008) Brain, 131, pp. 732-746; Levenga, J., Krishnamurthy, P., Rajamohamedsait, H., Wong, H., Franke, T.F., Cain, P., Sigurdsson, E.M., Hoeffer, C.A., Tau pathology induces loss of GABAergic interneurons leading to altered synaptic plasticity and behavioral impairments (2013) Acta Neuropathol. Commun., 1, p. 34; Meeter, L.H.H., Patzke, H., Loewen, G., Dopper, E.G.P., Pijnenburg, Y.A.L., van Minkelen, R., van Swieten, J.C., Progranulin levels in plasma and cerebrospinal fluid in granulin mutation carriers (2016) Dement Geriatr. Cogn. Disord. Extra, 6, pp. 330-340; Murley, A.G., Rowe, J.B., Neurotransmitter deficits from frontotemporal lobar degeneration (2018) Brain, 141, pp. 1263-1285; Pal, P.K., Gunraj, C.A., Li, J.Y., Lang, A.E., Chen, R., Reduced intracortical and interhemispheric inhibitions in corticobasal syndrome (2008) J. Clin. Neurophysiol., 25, pp. 304-312; Paternicò, D., Premi, E., Gazzina, S., Cosseddu, M., Alberici, A., Archetti, S., Cotelli, M.S., Borroni, B., White matter hyperintensities characterize monogenic frontotemporal dementia with granulin mutations (2016) Neurobiol. Aging, 38, pp. 176-180; Pietroboni, A.M., Fumagalli, G.G., Ghezzi, L., Fenoglio, C., Cortini, F., Serpente, M., Cantoni, C., Scarpini, E., Phenotypic heterogeneity of the GRN Asp22fs mutation in a large Italian kindred (2011) J. Alzheimers Dis., 24, pp. 253-259; Procter, A.W., Qurne, M., Francis, P.T., Neurochemical features of frontotemporal dementia (1999) Dement. Geriatr. Cogn. Disord., 10, pp. 80-84; Rascovsky, K., Hodges, J.R., Knopman, D., Mendez, M.F., Kramer, J.H., Neuhaus, J., van Swieten, J.C., Miller, B.L., Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia (2011) Brain, 134, pp. 2456-2477; Rohrer, J.D., Guerreiro, R., Vandrovcova, J., Uphill, J., Reiman, D., Beck, J., Authier, A., Rossor, M.N., The heritability and genetics of frontotemporal lobar degeneration (2009) Neurology, 73, pp. 1451-1456; Rohrer, J.D., Nicholas, J.M., Cash, D.M., Van Swieten, J., Dopper, E., Jiskoot, L., van Minkelen, R., Binetti, G., Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis (2015) Lancet Neurol., 14, pp. 253-262; Rossini, P.M., Burke, D., Chen, R., Cohen, L.G., Daskalakis, Z., Di Iorio, R., Di Lazzaro, V., Ziemann, U., Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee (2015) Clin. Neurophysiol., 126, pp. 1071-1107; Schmidt, P., Bayesian inference for structured additive regression models for large-scale problems with applications to medical imaging (2017) Dissertation, LMU München: Faculty of Mathematics, Computer Science and Statistics; Sudre, C.H., Bocchetta, M., Cash, D., Thomas, D.L., Woollacott, I., Dick, K.M., Van Swieten, J., Rohrer, J.D., White matter hyperintensities are seen only in GRN mutation carriers in the GENFI cohort (2017) Neuroimage Clin., 15, pp. 171-180; Clinical and neuropathological criteria for frontotemporal dementia. The lund and manchester groups (1994) J. Neurol. Neurosurg. Psychiatry, 57, pp. 416-418; Valls-Solé, J., Pascual-Leone, A., Wassermann, E.M., Hallett, M., Human motor evoked responses to paired transcranial magnetic stimuli (1992) Electroencephalogr. Clin. Neurophysiol., 85, pp. 355-364; Van Mossevelde, S., van der Zee, J., Gijselinck, I., Sleegers, K., De Bleecker, J., Sieben, A., Vandenberghe, R., Van Broeckhoven, C., Clinical evidence of disease anticipation in families segregating a C9orf72Repeat expansion (2017) JAMA Neurol., 74, pp. 445-452; Yamashita, T., Kwak, S., The molecular link between inefficient GluA2 Q/R site-RNA editing and TDP-43 pathology in motor neurons of sporadic amyotrophic lateral sclerosis patients (2014) Brain Res., 1584, pp. 28-38; Ziemann, U., Rothwell, J.C., Ridding, M.C., Interaction between intracortical inhibition and facilitation in human motor cortex (1996) J. Physiol., 496, pp. 873-881; Ziemann, U., Reis, J., Schwenkreis, P., Rosanova, M., Strafella, A., Badawy, R., Müller-Dahlhaus, F., TMS and drugs revisited 2014 (2015) Clin. Neurophysiol., 126, pp. 1847-1868
PY - 2019
Y1 - 2019
N2 - Presymptomatic carriers of GRN and C9orf72 mutations, the most frequent genetic causes of frontotemporal lobar degeneration, represent the optimal target population for the development of disease-modifying drugs. Preclinical biomarkers are needed to monitor the effect of therapeutic interventions in this population. We assessed clinical, functional, and neurophysiological measures in 113 GRN or C9orf72 carriers and in 73 noncarrier first-degree relatives. For 73 patients, follow-up longitudinal data were available. Differences between carriers and noncarriers were assessed using linear mixed-effects models. We observed that biological changes and intracortical facilitation transmission abnormalities significantly antecede the emergence of clinical symptoms of at least 3 decades. These are followed by intracortical inhibition transmission deficits, detected approximately 2 decades before expected symptom onset and then followed by an increase of white matter lesions, structural brain atrophy, and cognitive impairment. These results highlight how several biomarkers can show different aspects and rates of decline, possibly correlated with the underlying physiopathological process, that arise decades before the onset of clinical symptoms. © 2019 Elsevier Inc.
AB - Presymptomatic carriers of GRN and C9orf72 mutations, the most frequent genetic causes of frontotemporal lobar degeneration, represent the optimal target population for the development of disease-modifying drugs. Preclinical biomarkers are needed to monitor the effect of therapeutic interventions in this population. We assessed clinical, functional, and neurophysiological measures in 113 GRN or C9orf72 carriers and in 73 noncarrier first-degree relatives. For 73 patients, follow-up longitudinal data were available. Differences between carriers and noncarriers were assessed using linear mixed-effects models. We observed that biological changes and intracortical facilitation transmission abnormalities significantly antecede the emergence of clinical symptoms of at least 3 decades. These are followed by intracortical inhibition transmission deficits, detected approximately 2 decades before expected symptom onset and then followed by an increase of white matter lesions, structural brain atrophy, and cognitive impairment. These results highlight how several biomarkers can show different aspects and rates of decline, possibly correlated with the underlying physiopathological process, that arise decades before the onset of clinical symptoms. © 2019 Elsevier Inc.
KW - Biomarkers
KW - C9orf72
KW - Frontotemporal dementia
KW - GRN
KW - Transcranial magnetic stimulation
KW - adult
KW - Article
KW - brain atrophy
KW - brain tissue
KW - C9orf72 gene
KW - cognitive defect
KW - female
KW - follow up
KW - frontotemporal dementia
KW - gene
KW - gene mutation
KW - GRN gene
KW - heterozygote
KW - human
KW - major clinical study
KW - male
KW - middle aged
KW - neurotransmission
KW - priority journal
KW - tissue structure
KW - white matter lesion
KW - aged
KW - atrophy
KW - brain
KW - genetics
KW - mutation
KW - pathology
KW - pathophysiology
KW - psychology
KW - transcranial magnetic stimulation
KW - biological marker
KW - C9orf72 protein, human
KW - fungichromin
KW - GRN protein, human
KW - guanine nucleotide exchange C9orf72
KW - macrolide
KW - polyene
KW - Adult
KW - Aged
KW - Atrophy
KW - Brain
KW - C9orf72 Protein
KW - Female
KW - Frontotemporal Dementia
KW - Heterozygote
KW - Humans
KW - Macrolides
KW - Male
KW - Middle Aged
KW - Mutation
KW - Polyenes
KW - Progranulins
KW - Transcranial Magnetic Stimulation
U2 - 10.1016/j.neurobiolaging.2018.12.018
DO - 10.1016/j.neurobiolaging.2018.12.018
M3 - Article
VL - 76
SP - 133
EP - 140
JO - Neurobiol. Aging
JF - Neurobiol. Aging
SN - 0197-4580
ER -