@article{d1bd780b17b14a8a801aa9e656f2eca3,
title = "Clonal selection of a novel deleterious TP53 somatic mutation discovered in ctDNA of a KIT/PDGFRA wild-type gastrointestinal stromal tumor resistant to imatinib: Frontiers in Pharmacology",
abstract = "The standard of care for the first-line treatment of advanced gastrointestinal stromal tumor (GIST) is represented by imatinib, which is given daily at a standard dosage until tumor progression. Resistance to imatinib commonly occurs through the clonal selection of genetic mutations in the tumor DNA, and an increase in imatinib dosage was demonstrated to be efficacious to overcome imatinib resistance. Wild-type GISTs, which do not display KIT or platelet-derived growth factor receptor alpha (PDGFRA) mutations, are usually primarily insensitive to imatinib and tend to rapidly relapse in course of treatment. Here we report the case of a 53-year-old male patient with gastric GIST who primarily did not respond to imatinib and that, despite the administration of an increased imatinib dose, led to patient death. By using a deep next-generation sequencing barcodeaware approach, we analyzed a panel of actionable cancer-related genes in the patient cfDNA to investigate somatic changes responsible for imatinib resistance. We identified, in two serial circulating tumor DNA (ctDNA) samples, a sharp increase in the allele frequency of a never described TP53 mutation (c.560-7_560-2delCTCTTAinsT) located in a splice acceptor site and responsible for a protein loss of function. The same TP53 mutation was retrospectively identified in the primary tumor by digital droplet PCR at a subclonal frequency (0.1%). The mutation was detected at a very high allelic frequency (99%) in the metastatic hepatic lesion, suggesting a rapid clonal selection of the mutation during tumor progression. Imatinib plasma concentration at steady state was above the threshold of 760 ng/ml reported in the literature for the minimum efficacious concentration. The de novo TP53 (c.560-7_560-2delCTCTTAinsT) mutation was in silico predicted to be associated with an aberrant RNA splicing and with an aggressive phenotype which might have contributed to a rapid disease spread despite the administration of an increased imatinib dosage. This result underlies the need of a better investigation upon the role of TP53 in the pathogenesis of GISTs and sustains the use of next-generation sequencing (NGS) in cfDNA for the identification of novel genetic markers in wild-type GISTs. Copyright {\textcopyright} 2020 Dalle Fratte, Guardascione, De Mattia, Borsatti, Boschetto, Farruggio, Canzonieri, Romanato, Borsatti, Gagno, Marangon, Polano, Buonadonna, Toffoli and Cecchin.",
keywords = "Circulating tumor DNA, Gastrointestinal stromal tumor, Imatinib, Liquid biopsy, TP53, circulating tumor DNA, imatinib, platelet derived growth factor alpha receptor, protein p53, adult, Article, cancer growth, cancer tissue, case report, clinical article, computer model, death, DNA extraction, droplet digital polymerase chain reaction, drug blood level, drug dose increase, drug efficacy, gastrointestinal stromal tumor, gene, gene frequency, high throughput sequencing, human, human tissue, liquid chromatography, male, middle aged, phenotype, protein depletion, quality control, RNA splicing, somatic mutation, steady state, tandem mass spectrometry, total stomach resection, TP53 gene",
author = "{Delle Fratte}, Chiara and M. Guardascione and {De Mattia}, E. and E. Borsatti and R. Boschetto and A. Farruggio and V. Canzonieri and L. Romanato and R. Borsatti and S. Gagno and E. Marangon and M. Polano and A. Buonadonna and G. Toffoli and E. Cecchin",
note = "Cited By :1 Export Date: 17 February 2021 Correspondence Address: Toffoli, G.; Experimental and Clinical Pharmacology Unit, Italy; email: gtoffoli@cro.it Chemicals/CAS: imatinib, 152459-95-5, 220127-57-1 Funding details: Agenzia Italiana del Farmaco, Ministero della Salute, AIFA Funding text 1: The authors acknowledge funding from {"}Ministero della Salute Ricerca Corrente{"}. References: Al-Achkar, W., Wafa, A., Moassass, F., Othman, M.A.K., A novel dic (17;18) (p13.1;q11.2) with loss of TP53 and BCR/ABL rearrangement in an Imatinib resistant chronic myeloid leukemia (2012) Mol. Cytogenet., 5, p. 36; Basu, S., Murphy, M.E., Genetic modifiers of the p53 pathway (2016) Cold Spring Harb. Perspect. Med., 6 (4), p. a026302; Boikos, S.A., Pappo, A.S., Killian, J.K., LaQuaglia, M.P., Weldon, C.B., George, S., Molecular subtypes of KIT/PDGFRA wild-type gastrointestinal stromal tumors (2016) JAMA Oncol, 2 (7), pp. 922-928; Bouaoun, L., Sonkin, D., Ardin, M., Hollstein, M., Byrnes, G., Zavadil, J., TP53 variations in human cancers: New lessons from the IARC TP53 database and genomics data (2016) Hum. Mutat., 37 (9), pp. 865-876; Bouchet, S., Poulette, S., Titier, K., Moore, N., Lassalle, R., Abouelfath, A., Relationship between imatinib trough concentration and outcomes in the treatment of advanced gastrointestinal stromal tumours in a real-life setting (2016) Eur. J. Cancer, 57, pp. 31-38; Brunak, S., Engelbrecht, J., Knudsen, S., Prediction of human mRNA donor and acceptor sites from the DNA sequence (1991) J. Mol. Biol., 220 (1), pp. 49-65; Burge, C., Karlin, S., Prediction of complete gene structures in human genomic DNA (1997) J. Mol. Biol., 268 (1), pp. 78-94; Cao, J., Wei, J., Yang, P., Zhang, T., Chen, Z., He, F., Genome-scale CRISPR-Cas9 knockout screening in gastrointestinal stromal tumor with Imatinib resistance (2018) Mol. Cancer, 17 (1), p. 121; Casali, P.G., Abecassis, N., Bauer, S., Biagini, R., Bielack, S., Bonvalot, S., Gastrointestinal stromal tumours: ESMO–EURACAN clinical practice guidelines for diagnosis, treatment and follow-up† (2018) Ann. Oncol., 29, pp. iv68-iv78; Coombes, C., Page, K., Salari, R., Hastings, R.K., Armstrong, A.C., Ahmed, S., Personalized detection of circulating tumor DNA antedates breast cancer metastatic recurrence (2019) Clin. Cancer Res., 25 (14), pp. 4255-4263; Corless, C.L., Fletcher, J.A., Heinrich, M.C., Biology of gastrointestinal stromal tumors (2004) J. Clin. Oncol., 22 (18), pp. 3813-3825; Das, S., Raj, L., Zhao, B., Kimura, Y., Bernstein, A., Aaronson, S.A., Hzf Determines cell survival upon genotoxic stress by modulating p53 transactivation (2007) Cell, 130 (4), pp. 624-637; Debiec-Rychter, M., Sciot, R., Le Cesne, A., Schlemmer, M., Hohenberger, P., Van Oosterom, A.T., KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours (2006) Eur. J. Cancer, 42 (8), pp. 1093-1103; DeMatteo, R.P., Lewis, J.J., Leung, D., Mudan, S.S., Woodruff, J.M., Brennan, M.F., Two hundred gastrointestinal stromal tumors: Recurrence patterns and prognostic factors for survival (2000) Ann. Surg., 231 (1), pp. 51-58; Desmet, F.-O., Hamroun, D., Lalande, M., Collod-B{\'e}roud, G., Claustres, M., B{\'e}roud, C., Human splicing finder: An online bioinformatics tool to predict splicing signals (2009) Nucleic Acids Res, 37 (9); Fletcher, C.D.M., Berman, J.J., Corless, C., Gorstein, F., Lasota, J., Longley, B.J., Diagnosis of gastrointestinal stromal tumors: A consensus approach (2002) Hum. Pathol., 33 (5), pp. 459-465; Hebsgaard, S.M., Korning, P.G., Tolstrup, N., Engelbrecht, J., Rouz{\'e}, P., Brunak, S., Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information (1996) Nucleic Acids Res, 24 (17), pp. 3439-3452; Heinrich, M.C., Corless, C.L., Demetri, G.D., Blanke, C.D., Von Mehren, M., Joensuu, H., Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor (2003) J. Clin. Oncol., 21 (23), pp. 4342-4349; Heinrich, M.C., Patterson, J., Beadling, C., Wang, Y., Debiec-Rychter, M., Dewaele, B., Genomic aberrations in cell cycle genes predict progression of KIT-mutant gastrointestinal stromal tumors (GISTs) (2019) Clin. Sarcoma. Res., 9, p. 3; Houdayer, C., Dehainault, C., Mattler, C., Michaux, D., Caux-Moncoutier, V., Pag{\`e}s-Berhouet, S., Evaluation of in silico splice tools for decision-making in molecular diagnosis (2008) Hum. Mutat., 29 (7), pp. 975-982; Ihle, M.A., Huss, S., Jeske, W., Hartmann, W., Merkelbach-Bruse, S., Schildhaus, H.-U., Expression of cell cycle regulators and frequency of TP53 mutations in high risk gastrointestinal stromal tumors prior to adjuvant imatinib treatment (2018) PloS One, 13 (2); Lasota, J., Corless, C.L., Heinrich, M.C., Debiec-Rychter, M., Sciot, R., Wardelmann, E., Clinicopathologic profile of gastrointestinal stromal tumors (GISTs) with primary KIT exon 13 or exon 17 mutations: A multicenter study on 54 cases (2008) Mod. Pathol., 21 (4), pp. 476-484; Li, H., Durbin, R., Fast and accurate short read alignment with Burrows-Wheeler transform (2009) Bioinform. Oxf. Engl., 25 (14), pp. 1754-1760; Maier, J., Lange, T., Kerle, I., Specht, K., Bruegel, M., Wickenhauser, C., Detection of mutant free circulating tumor DNA in the plasma of patients with gastrointestinal stromal tumor harboring activating mutations of CKIT or PDGFRA (2013) Clin. Cancer Res., 19 (17), pp. 4854-4867; Merten, L., Agaimy, A., Moskalev, E.A., Giedl, J., Kayser, C., Geddert, H., Inactivating mutations of RB1 and TP53 correlate with sarcomatous histomorphology and metastasis/recurrence in gastrointestinal stromal tumors (2016) Am. J. Clin. Pathol., 146 (6), pp. 718-726; Miettinen, M., Lasota, J., Gastrointestinal stromal tumors: Review on morphology, molecular pathology, prognosis, and differential diagnosis (2006) Arch. Pathol. Lab. Med., 130 (10), pp. 1466-1478; Pantaleo, M.A., Urbini, M., Indio, V., Ravegnini, G., Nannini, M., De Luca, M., Genome-wide analysis identifies MEN1 and MAX mutations and a neuroendocrine-like molecular heterogeneity in quadruple WT GIST (2017) Mol. Cancer Res. MCR, 15 (5), pp. 553-562; Reese, M.G., Eeckman, F.H., Kulp, D., Haussler, D., Improved splice site detection in genie (1997) J. Comput. Biol., 4 (3), pp. 311-323; Russo, M., Siravegna, G., Blaszkowsky, L.S., Corti, G., Crisafulli, G., Ahronian, L.G., Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer (2016) Cancer Discovery, 6 (2), pp. 147-153; Shapiro, M.B., Senapathy, P., RNA splice junctions of different classes of eukaryotes: Sequence statistics and functional implications in gene expression (1987) Nucleic Acids Res, 15 (17), pp. 7155-7174; Siravegna, G., Sartore-Bianchi, A., Nagy, R.J., Raghav, K., Odegaard, J.I., Lanman, R.B., Plasma HER2 (ERBB2) copy number predicts response to HER2-targeted therapy in metastatic colorectal cancer (2019) Clin. Cancer Res., 25 (10), pp. 3046-3053; Sun, L., Shi, L., Li, W., Yu, W., Liang, J., Zhang, H., JFK, a Kelch domain-containing F-box protein, links the SCF complex to p53 regulation (2009) Proc. Natl. Acad. Sci., 106 (25), pp. 10195-10200; Tie, J., Wang, Y., Tomasetti, C., Li, L., Springer, S., Kinde, I., Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer (2016) Sci. Transl. Med., 8 (346), p. 346ra92; Wei, C.H., Pettersson, J., Campan, M., Chopra, S., Naritoku, W., Martin, S.E., Gain of TP53 mutation in Imatinib-treated SDH-deficient gastrointestinal stromal tumor and clinical utilization of targeted next-generation sequencing panel for therapeutic decision support (2018) Appl. Immunohistochem. Mol. Morphol. AIMM, 26 (8), pp. 573-578; Wendel, H.-G., De Stanchina, E., Cepero, E., Ray, S., Emig, M., Fridman, J.S., Loss of p53 impedes the antileukemic response to BCR-ABL inhibition (2006) Proc. Natl. Acad. Sci. U. S. A., 103 (19), pp. 7444-7449; Xu, H., Chen, L., Shao, Y., Zhu, D., Zhi, X., Zhang, Q., Clinical application of circulating tumor DNA in the genetic analysis of patients with advanced GIST (2018) Mol. Cancer Ther., 17 (1), pp. 290-296; Xu, C., Gu, X., Padmanabhan, R., Wu, Z., Peng, Q., DiCarlo, J., Smcounter2: An accurate low-frequency variant caller for targeted sequencing data with unique molecular identifiers (2019) Bioinformatics, 35 (8), pp. 1299-1309; Yeo, G., Burge, C.B., Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals (2004) J. Comput. Biol., 11 (2-3), pp. 377-394",
year = "2020",
doi = "10.3389/fphar.2020.00036",
language = "English",
volume = "11",
pages = "36",
journal = "Front. Pharmacol.",
issn = "1663-9812",
publisher = "Frontiers Media S.A.",
}