TY - JOUR
T1 - Co-targeting the IGF system and HIF-1 inhibits migration and invasion by (triple-negative) breast cancer cells
AU - Mancini, M.
AU - Gariboldi, M. B.
AU - Taiana, E.
AU - Bonzi, M. C.
AU - Craparotta, I.
AU - Pagin, M.
AU - Monti, E.
PY - 2014/6/10
Y1 - 2014/6/10
N2 - Background:Metastatic triple-negative breast cancer is mostly incurable, due to lack of suitable drug targets. The insulin-like growth factor (IGF) system could provide such a target, and IGF-1 receptor (IGF-1R)-directed agents are already available, but seem unable to control all the complexities of the system, including crosstalk with hypoxia-inducible pathways.Methods:Migration of triple-negative MDA-231 breast cancer cells and its modulation by IGFs, the IGF-1R inhibitor NVP-AEW541 and the IGF-2-sequestering monoclonal antibody MAB292 were assessed by the scratch wound healing and Boyden chamber assays; the effect of topotecan (inhibiting hypoxia-inducible factor-1 (HIF-1)) under hypoxia was also evaluated. Constitutive as well as drug-modulated levels of components of the IGF and HIF-1 pathways were evaluated by western blotting and qPCR.Results:IGF-induced migration of MDA-231 cells was not abrogated by the IGF-1R inhibitor NVP-AEW541, whereas IGF-2 sequestration by MAB292 significantly reduced cell migration. Under hypoxia, topotecan was also effective, likely by reducing HIF-1-induced IGF-2 release. Simultaneous targeting of IGF-1R and IGF-2 or HIF-1 completely abolished cell migration.Conclusions:IR activation may account for the failure of NVP-AEW541 to suppress MDA-231 cell migration. Ligand-targeting compounds, or co-inhibition of the IGF and HIF-1 systems, may prevent activation of compensatory signalling, thereby providing a valuable addition to IGF-1R inhibitor-based therapies.
AB - Background:Metastatic triple-negative breast cancer is mostly incurable, due to lack of suitable drug targets. The insulin-like growth factor (IGF) system could provide such a target, and IGF-1 receptor (IGF-1R)-directed agents are already available, but seem unable to control all the complexities of the system, including crosstalk with hypoxia-inducible pathways.Methods:Migration of triple-negative MDA-231 breast cancer cells and its modulation by IGFs, the IGF-1R inhibitor NVP-AEW541 and the IGF-2-sequestering monoclonal antibody MAB292 were assessed by the scratch wound healing and Boyden chamber assays; the effect of topotecan (inhibiting hypoxia-inducible factor-1 (HIF-1)) under hypoxia was also evaluated. Constitutive as well as drug-modulated levels of components of the IGF and HIF-1 pathways were evaluated by western blotting and qPCR.Results:IGF-induced migration of MDA-231 cells was not abrogated by the IGF-1R inhibitor NVP-AEW541, whereas IGF-2 sequestration by MAB292 significantly reduced cell migration. Under hypoxia, topotecan was also effective, likely by reducing HIF-1-induced IGF-2 release. Simultaneous targeting of IGF-1R and IGF-2 or HIF-1 completely abolished cell migration.Conclusions:IR activation may account for the failure of NVP-AEW541 to suppress MDA-231 cell migration. Ligand-targeting compounds, or co-inhibition of the IGF and HIF-1 systems, may prevent activation of compensatory signalling, thereby providing a valuable addition to IGF-1R inhibitor-based therapies.
KW - Hypoxia
KW - IGFs
KW - Migration
KW - Triple-negative breast cancer
UR - http://www.scopus.com/inward/record.url?scp=84902548089&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84902548089&partnerID=8YFLogxK
U2 - 10.1038/bjc.2014.269
DO - 10.1038/bjc.2014.269
M3 - Article
C2 - 24853185
AN - SCOPUS:84902548089
VL - 110
SP - 2865
EP - 2873
JO - British Journal of Cancer
JF - British Journal of Cancer
SN - 0007-0920
IS - 12
ER -