Combined assessment of diffusion parameters and cerebral blood flow within basal ganglia in early Parkinson's disease

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Diffusion tensor imaging (DTI) is a sensitive tool for detecting brain tissue microstructural alterations in Parkinson's disease (PD). Abnormal cerebral perfusion patterns have also been reported in PD patients using arterial spin labeling (ASL) MRI. In this study we aimed to perform a combined DTI and ASL assessment in PD patients within the basal ganglia, in order to test the relationship between microstructural and perfusion alterations. Fifty-two subjects participated in this study. Specifically, 26 PD patients [mean age (SD) = 66.7 (8.9) years, 21 males, median (IQR) Modified Hoehn and Yahr = 1.5 (1-1.6)] and twenty-six healthy controls [HC, mean age (SD) = 65.2 (7.5), 15 males] were scanned with 1.5T MRI. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD) maps were derived from diffusion-weighted images, while cerebral blood flow (CBF) maps were computed from ASL data. After registration to Montreal Neurological Institute standard space, FA, MD, AD, RD and CBF median values were extracted within specific regions of interest: substantia nigra, caudate, putamen, globus pallidus, thalamus, red nucleus and subthalamic nucleus. DTI measures and CBF were compared between the two groups. The relationship between diffusion parameters and CBF was tested with Spearman's correlations. False discovery rate (FDR)-corrected p-values lower than 0.05 were considered significant, while uncorrected p-values <0.05 were considered a trend. No significant FA, MD and RD differences were observed. AD was significantly increased in PD patients compared with HC in the putamen (p = 0.005, pFDR = 0.035). No significant CBF differences were found between PD patients and HC. Diffusion parameters were not significantly correlated with CBF in the HC group, while a significant correlation emerged for PD patients in the caudate nucleus, for all DTI measures (with FA: r = 0.543, pFDR = 0.028; with MD: r = -0.661, pFDR = 0.002; with AD: r = -0.628, pFDR = 0.007; with RD: r = -0.635, pFDR = 0.003). This study showed that DTI is a more sensitive technique than ASL to detect alterations in the basal ganglia in the early phase of PD. Our results suggest that, although DTI and ASL convey different information, a relationship between microstructural integrity and perfusion changes in the caudate may be present.

Original languageEnglish
Article number134
JournalFrontiers in Aging Neuroscience
Volume11
Issue numberJUN
DOIs
Publication statusPublished - Jan 1 2019

Fingerprint

Cerebrovascular Circulation
Basal Ganglia
Diffusion Tensor Imaging
Parkinson Disease
Anisotropy
Perfusion
Putamen
Red Nucleus
Subthalamic Nucleus
Globus Pallidus
Caudate Nucleus
Substantia Nigra
Thalamus

Keywords

  • ASL
  • Cerebral blood flow
  • Diffusion parameters
  • DTI
  • Parkinson's disease

ASJC Scopus subject areas

  • Ageing
  • Cognitive Neuroscience

Cite this

@article{07adf3d7607743b0a3fb5f31be5c2ebd,
title = "Combined assessment of diffusion parameters and cerebral blood flow within basal ganglia in early Parkinson's disease",
abstract = "Diffusion tensor imaging (DTI) is a sensitive tool for detecting brain tissue microstructural alterations in Parkinson's disease (PD). Abnormal cerebral perfusion patterns have also been reported in PD patients using arterial spin labeling (ASL) MRI. In this study we aimed to perform a combined DTI and ASL assessment in PD patients within the basal ganglia, in order to test the relationship between microstructural and perfusion alterations. Fifty-two subjects participated in this study. Specifically, 26 PD patients [mean age (SD) = 66.7 (8.9) years, 21 males, median (IQR) Modified Hoehn and Yahr = 1.5 (1-1.6)] and twenty-six healthy controls [HC, mean age (SD) = 65.2 (7.5), 15 males] were scanned with 1.5T MRI. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD) maps were derived from diffusion-weighted images, while cerebral blood flow (CBF) maps were computed from ASL data. After registration to Montreal Neurological Institute standard space, FA, MD, AD, RD and CBF median values were extracted within specific regions of interest: substantia nigra, caudate, putamen, globus pallidus, thalamus, red nucleus and subthalamic nucleus. DTI measures and CBF were compared between the two groups. The relationship between diffusion parameters and CBF was tested with Spearman's correlations. False discovery rate (FDR)-corrected p-values lower than 0.05 were considered significant, while uncorrected p-values <0.05 were considered a trend. No significant FA, MD and RD differences were observed. AD was significantly increased in PD patients compared with HC in the putamen (p = 0.005, pFDR = 0.035). No significant CBF differences were found between PD patients and HC. Diffusion parameters were not significantly correlated with CBF in the HC group, while a significant correlation emerged for PD patients in the caudate nucleus, for all DTI measures (with FA: r = 0.543, pFDR = 0.028; with MD: r = -0.661, pFDR = 0.002; with AD: r = -0.628, pFDR = 0.007; with RD: r = -0.635, pFDR = 0.003). This study showed that DTI is a more sensitive technique than ASL to detect alterations in the basal ganglia in the early phase of PD. Our results suggest that, although DTI and ASL convey different information, a relationship between microstructural integrity and perfusion changes in the caudate may be present.",
keywords = "ASL, Cerebral blood flow, Diffusion parameters, DTI, Parkinson's disease",
author = "Laura Pelizzari and Lagan{\`a}, {Maria M.} and {Di Tella}, Sonia and Federica Rossetto and Niels Bergsland and Raffaello Nemni and Mario Clerici and Francesca Baglio",
year = "2019",
month = "1",
day = "1",
doi = "10.3389/fnagi.2019.00134",
language = "English",
volume = "11",
journal = "Frontiers in Aging Neuroscience",
issn = "1663-4365",
publisher = "Frontiers Research Foundation",
number = "JUN",

}

TY - JOUR

T1 - Combined assessment of diffusion parameters and cerebral blood flow within basal ganglia in early Parkinson's disease

AU - Pelizzari, Laura

AU - Laganà, Maria M.

AU - Di Tella, Sonia

AU - Rossetto, Federica

AU - Bergsland, Niels

AU - Nemni, Raffaello

AU - Clerici, Mario

AU - Baglio, Francesca

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Diffusion tensor imaging (DTI) is a sensitive tool for detecting brain tissue microstructural alterations in Parkinson's disease (PD). Abnormal cerebral perfusion patterns have also been reported in PD patients using arterial spin labeling (ASL) MRI. In this study we aimed to perform a combined DTI and ASL assessment in PD patients within the basal ganglia, in order to test the relationship between microstructural and perfusion alterations. Fifty-two subjects participated in this study. Specifically, 26 PD patients [mean age (SD) = 66.7 (8.9) years, 21 males, median (IQR) Modified Hoehn and Yahr = 1.5 (1-1.6)] and twenty-six healthy controls [HC, mean age (SD) = 65.2 (7.5), 15 males] were scanned with 1.5T MRI. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD) maps were derived from diffusion-weighted images, while cerebral blood flow (CBF) maps were computed from ASL data. After registration to Montreal Neurological Institute standard space, FA, MD, AD, RD and CBF median values were extracted within specific regions of interest: substantia nigra, caudate, putamen, globus pallidus, thalamus, red nucleus and subthalamic nucleus. DTI measures and CBF were compared between the two groups. The relationship between diffusion parameters and CBF was tested with Spearman's correlations. False discovery rate (FDR)-corrected p-values lower than 0.05 were considered significant, while uncorrected p-values <0.05 were considered a trend. No significant FA, MD and RD differences were observed. AD was significantly increased in PD patients compared with HC in the putamen (p = 0.005, pFDR = 0.035). No significant CBF differences were found between PD patients and HC. Diffusion parameters were not significantly correlated with CBF in the HC group, while a significant correlation emerged for PD patients in the caudate nucleus, for all DTI measures (with FA: r = 0.543, pFDR = 0.028; with MD: r = -0.661, pFDR = 0.002; with AD: r = -0.628, pFDR = 0.007; with RD: r = -0.635, pFDR = 0.003). This study showed that DTI is a more sensitive technique than ASL to detect alterations in the basal ganglia in the early phase of PD. Our results suggest that, although DTI and ASL convey different information, a relationship between microstructural integrity and perfusion changes in the caudate may be present.

AB - Diffusion tensor imaging (DTI) is a sensitive tool for detecting brain tissue microstructural alterations in Parkinson's disease (PD). Abnormal cerebral perfusion patterns have also been reported in PD patients using arterial spin labeling (ASL) MRI. In this study we aimed to perform a combined DTI and ASL assessment in PD patients within the basal ganglia, in order to test the relationship between microstructural and perfusion alterations. Fifty-two subjects participated in this study. Specifically, 26 PD patients [mean age (SD) = 66.7 (8.9) years, 21 males, median (IQR) Modified Hoehn and Yahr = 1.5 (1-1.6)] and twenty-six healthy controls [HC, mean age (SD) = 65.2 (7.5), 15 males] were scanned with 1.5T MRI. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD) maps were derived from diffusion-weighted images, while cerebral blood flow (CBF) maps were computed from ASL data. After registration to Montreal Neurological Institute standard space, FA, MD, AD, RD and CBF median values were extracted within specific regions of interest: substantia nigra, caudate, putamen, globus pallidus, thalamus, red nucleus and subthalamic nucleus. DTI measures and CBF were compared between the two groups. The relationship between diffusion parameters and CBF was tested with Spearman's correlations. False discovery rate (FDR)-corrected p-values lower than 0.05 were considered significant, while uncorrected p-values <0.05 were considered a trend. No significant FA, MD and RD differences were observed. AD was significantly increased in PD patients compared with HC in the putamen (p = 0.005, pFDR = 0.035). No significant CBF differences were found between PD patients and HC. Diffusion parameters were not significantly correlated with CBF in the HC group, while a significant correlation emerged for PD patients in the caudate nucleus, for all DTI measures (with FA: r = 0.543, pFDR = 0.028; with MD: r = -0.661, pFDR = 0.002; with AD: r = -0.628, pFDR = 0.007; with RD: r = -0.635, pFDR = 0.003). This study showed that DTI is a more sensitive technique than ASL to detect alterations in the basal ganglia in the early phase of PD. Our results suggest that, although DTI and ASL convey different information, a relationship between microstructural integrity and perfusion changes in the caudate may be present.

KW - ASL

KW - Cerebral blood flow

KW - Diffusion parameters

KW - DTI

KW - Parkinson's disease

UR - http://www.scopus.com/inward/record.url?scp=85069158382&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85069158382&partnerID=8YFLogxK

U2 - 10.3389/fnagi.2019.00134

DO - 10.3389/fnagi.2019.00134

M3 - Article

AN - SCOPUS:85069158382

VL - 11

JO - Frontiers in Aging Neuroscience

JF - Frontiers in Aging Neuroscience

SN - 1663-4365

IS - JUN

M1 - 134

ER -