Combined targeting of EGFR-dependent and VEGF-dependent pathways: Rationale, preclinical studies and clinical applications

Giampaolo Tortora, Fortunato Ciardiello, Giampietro Gasparini

Research output: Contribution to journalArticlepeer-review


Cellular heterogeneity, redundancy of molecular pathways and effects of the microenvironment contribute to the survival, motility and metastasis of cells in solid tumors. It is unlikely that tumors are entirely dependent on only one abnormally activated signaling pathway; consequently, treatment with an agent that interferes with a single target may be insufficient. Combined blockade of functionally linked and relevant multiple targets has become an attractive therapeutic strategy. The EGFR and ERBB2 (HER2) pathways and VEGF-dependent angiogenesis have a pivotal role in cancer pathogenesis and progression. Robust experimental evidence has shown that these pathways are functionally linked and has demonstrated a suggested role for VEGF in the acquired resistance to anti-ERBB drugs when these receptors are pharmacologically blocked. Combined inhibition of ERBB and VEGF signaling interferes with a molecular feedback loop responsible for acquired resistance to anti-ERBB agents and promotes apoptosis while ablating tumor-induced angiogenesis. To this aim, either two agents highly selective against VEGF and ERBB respectively, or, alternatively, a single multitargeted agent, can be used. Preclinical studies have proven the efficacy of both these approaches and early clinical studies have provided encouraging results. This Review discusses the experimental rationale for, preclinical studies of and clinical trials on combined blockade of ERBB and VEGF signaling.

Original languageEnglish
Pages (from-to)521-530
Number of pages10
JournalNature Clinical Practice Oncology
Issue number9
Publication statusPublished - 2008

ASJC Scopus subject areas

  • Oncology


Dive into the research topics of 'Combined targeting of EGFR-dependent and VEGF-dependent pathways: Rationale, preclinical studies and clinical applications'. Together they form a unique fingerprint.

Cite this