Community structure of cortical networks in spinal cord injured patients

F. De Vico Fallani, R. Sinatra, L. Astolfi, D. Mattia, F. Cincotti, V. Latora, S. Salinari, M. G. Marciani, A. Colosimo, F. Babiloni

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In the present study, we estimated the cortical networks were from high-resolution EEG recordings in a group of spinal cord injured patients and in a group of healthy subjects, during the preparation of a limb movement. Then, we use the Markov Clustering method to analyse the division of the network into community structures. The results indicate large differences between the injured patients and the healthy subjects. In particular, the networks of spinal cord injured patient exhibited a higher density of clusters. In the Alpha (7-12 Hz) frequency band, the two observed largest communities were mainly composed by the cingulate motor areas with the supplementary motor areas, and by the pre-motor areas with the right primary motor area of the foot. This functional separation could reflect the partial alteration in the primary motor areas because of the effects of the spinal cord injury.

Original languageEnglish
Title of host publicationProceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08 - "Personalized Healthcare through Technology"
Pages3995-3998
Number of pages4
Publication statusPublished - 2008
Event30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08 - Vancouver, BC, Canada
Duration: Aug 20 2008Aug 25 2008

Other

Other30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08
CountryCanada
CityVancouver, BC
Period8/20/088/25/08

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Biomedical Engineering
  • Health Informatics

Fingerprint Dive into the research topics of 'Community structure of cortical networks in spinal cord injured patients'. Together they form a unique fingerprint.

Cite this