Comparison of Allplex™ SARS-CoV-2 Assay, Easy SARS-CoV-2 WE and Lumipulse quantitative SARS-CoV-2 antigen test performance using automated systems for the diagnosis of COVID-19

Research output: Contribution to journalArticlepeer-review

Abstract

Diagnostic methods based on SARS-CoV-2 antigen detection are a promising alternative to SARS-CoV-2 RNA amplification. We evaluated the automated chemiluminescence-based Lumipulse® G SARS-CoV-2 Ag assay as compared to real time assays (combined results from RT-PCR Allplex™ SARS-CoV-2 assay and Easy SARS-CoV-2 WE kit) on 513 nasopharyngeal swabs (NPS). Among these, 53.6% resulted positive to RT-PCR, considered as the reference test. Compared to the reference test, overall sensitivity and specificity of Lumipulse® G SARS-CoV-2 Ag assay were 84.0%, and 89.1%, respectively, and overall agreement between the antigen and molecular assays was substantial (κ = 0.727). When stratifying samples into groups based on ranges of RT-PCR cycle threshold (Ct), the antigen test sensitivity was >95% for samples with Ct <30. Linear regression analysis showed strong and highly significant correlation between the Lumipulse Ag concentrations and the RT-PCR Ct values (RdRp gene), irrespective of whether the Ct values from molecular test were combined in a unique regression analysis or analysed separately. Overall, chemiluminescence-based antigen assay may be reliably applied to NPS samples to identify individuals with high viral loads, more likely to transmit the virus.

Original languageEnglish
Pages (from-to)113-115
Number of pages3
JournalInternational Journal of Infectious Diseases
Volume113
DOIs
Publication statusPublished - Dec 2021

Keywords

  • Antigen assay
  • COVID-19
  • Lumipulse
  • RT-PCR
  • SARS-CoV-2

ASJC Scopus subject areas

  • Microbiology (medical)
  • Infectious Diseases

Fingerprint

Dive into the research topics of 'Comparison of Allplex™ SARS-CoV-2 Assay, Easy SARS-CoV-2 WE and Lumipulse quantitative SARS-CoV-2 antigen test performance using automated systems for the diagnosis of COVID-19'. Together they form a unique fingerprint.

Cite this