Comparison of short term variability indexes in cardiotocographic foetal monitoring

M. Cesarelli, M. Romano, P. Bifulco

Research output: Contribution to journalArticle

Abstract

Concise indexes related to variability of foetal heart rate (FHR) are usually utilised for foetal monitoring; they enrich information provided by cardiotocography (CTG). Most attention is paid to the short term variability (STV), which relates to activity and reaction of autonomic nervous control of foetal heart. There is not a unique method to compute short term variability of the FHR but different formulas have been proposed and are employed in clinical and scientific environments: this leads to different evaluations and makes difficult comparative studies. Nine short term variability indexes: Arduini, Dalton, Organ, Sonicaid 8000, Van Geijn, Yeh, Zugaib a modified version of Arduini index and Standard Deviation were considered and compared to test their robustness in CTG applications. A large set of synthetic foetal heart rate series with known features were used to compare indexes performances. Different amounts of variability, mean foetal heart rate, storage rates, baseline variations were considered. The different indexes were in particular tested for their capability to recognise short term heart rate variability variation, their dependence on heart rate signal storage rate (as those provided by commercial cardiotocographic devices), on mean value of the foetal heart rate and on modifications of the floatingline, such in case of accelerations or decelerations. Concise statistical parameters relative to indexes scores were presented in comparative tables. Results indicate that although the indexes are able to recognise STV variation, they show substantial differences in magnitude and some in sensibility. Results depend on the frequency used to acquire and store FHR data (depending on devices); in general, the lower is data rate the more degraded are the results. Furthermore, results differently depend on FHR mean, some for their intrinsic definition; differences arise also in correspondences of accelerations and decelerations. Our results demonstrate that only indexes which refer directly to differences in FHR values, such as Organ and SD indexes, not show dependence on FHR mean. The use of the Standard Deviation index may provide efficient information while showing independence from the considered variables. Indexes performance in case of real cardiotocographic signals were also presented as examples.

Original languageEnglish
Pages (from-to)106-118
Number of pages13
JournalComputers in Biology and Medicine
Volume39
Issue number2
DOIs
Publication statusPublished - Feb 2009

Fingerprint

Fetal monitoring
Fetal Monitoring
Fetal Heart Rate
Cardiotocography
Deceleration
Heart Rate
Fetal Heart
Equipment and Supplies

Keywords

  • Cardiotocography
  • Foetal heart rate
  • Short term variability

ASJC Scopus subject areas

  • Computer Science Applications
  • Health Informatics

Cite this

Comparison of short term variability indexes in cardiotocographic foetal monitoring. / Cesarelli, M.; Romano, M.; Bifulco, P.

In: Computers in Biology and Medicine, Vol. 39, No. 2, 02.2009, p. 106-118.

Research output: Contribution to journalArticle

@article{8eb9125d1a8f446dab62ae51dd14a08e,
title = "Comparison of short term variability indexes in cardiotocographic foetal monitoring",
abstract = "Concise indexes related to variability of foetal heart rate (FHR) are usually utilised for foetal monitoring; they enrich information provided by cardiotocography (CTG). Most attention is paid to the short term variability (STV), which relates to activity and reaction of autonomic nervous control of foetal heart. There is not a unique method to compute short term variability of the FHR but different formulas have been proposed and are employed in clinical and scientific environments: this leads to different evaluations and makes difficult comparative studies. Nine short term variability indexes: Arduini, Dalton, Organ, Sonicaid 8000, Van Geijn, Yeh, Zugaib a modified version of Arduini index and Standard Deviation were considered and compared to test their robustness in CTG applications. A large set of synthetic foetal heart rate series with known features were used to compare indexes performances. Different amounts of variability, mean foetal heart rate, storage rates, baseline variations were considered. The different indexes were in particular tested for their capability to recognise short term heart rate variability variation, their dependence on heart rate signal storage rate (as those provided by commercial cardiotocographic devices), on mean value of the foetal heart rate and on modifications of the floatingline, such in case of accelerations or decelerations. Concise statistical parameters relative to indexes scores were presented in comparative tables. Results indicate that although the indexes are able to recognise STV variation, they show substantial differences in magnitude and some in sensibility. Results depend on the frequency used to acquire and store FHR data (depending on devices); in general, the lower is data rate the more degraded are the results. Furthermore, results differently depend on FHR mean, some for their intrinsic definition; differences arise also in correspondences of accelerations and decelerations. Our results demonstrate that only indexes which refer directly to differences in FHR values, such as Organ and SD indexes, not show dependence on FHR mean. The use of the Standard Deviation index may provide efficient information while showing independence from the considered variables. Indexes performance in case of real cardiotocographic signals were also presented as examples.",
keywords = "Cardiotocography, Foetal heart rate, Short term variability",
author = "M. Cesarelli and M. Romano and P. Bifulco",
year = "2009",
month = "2",
doi = "10.1016/j.compbiomed.2008.11.010",
language = "English",
volume = "39",
pages = "106--118",
journal = "Computers in Biology and Medicine",
issn = "0010-4825",
publisher = "Elsevier Limited",
number = "2",

}

TY - JOUR

T1 - Comparison of short term variability indexes in cardiotocographic foetal monitoring

AU - Cesarelli, M.

AU - Romano, M.

AU - Bifulco, P.

PY - 2009/2

Y1 - 2009/2

N2 - Concise indexes related to variability of foetal heart rate (FHR) are usually utilised for foetal monitoring; they enrich information provided by cardiotocography (CTG). Most attention is paid to the short term variability (STV), which relates to activity and reaction of autonomic nervous control of foetal heart. There is not a unique method to compute short term variability of the FHR but different formulas have been proposed and are employed in clinical and scientific environments: this leads to different evaluations and makes difficult comparative studies. Nine short term variability indexes: Arduini, Dalton, Organ, Sonicaid 8000, Van Geijn, Yeh, Zugaib a modified version of Arduini index and Standard Deviation were considered and compared to test their robustness in CTG applications. A large set of synthetic foetal heart rate series with known features were used to compare indexes performances. Different amounts of variability, mean foetal heart rate, storage rates, baseline variations were considered. The different indexes were in particular tested for their capability to recognise short term heart rate variability variation, their dependence on heart rate signal storage rate (as those provided by commercial cardiotocographic devices), on mean value of the foetal heart rate and on modifications of the floatingline, such in case of accelerations or decelerations. Concise statistical parameters relative to indexes scores were presented in comparative tables. Results indicate that although the indexes are able to recognise STV variation, they show substantial differences in magnitude and some in sensibility. Results depend on the frequency used to acquire and store FHR data (depending on devices); in general, the lower is data rate the more degraded are the results. Furthermore, results differently depend on FHR mean, some for their intrinsic definition; differences arise also in correspondences of accelerations and decelerations. Our results demonstrate that only indexes which refer directly to differences in FHR values, such as Organ and SD indexes, not show dependence on FHR mean. The use of the Standard Deviation index may provide efficient information while showing independence from the considered variables. Indexes performance in case of real cardiotocographic signals were also presented as examples.

AB - Concise indexes related to variability of foetal heart rate (FHR) are usually utilised for foetal monitoring; they enrich information provided by cardiotocography (CTG). Most attention is paid to the short term variability (STV), which relates to activity and reaction of autonomic nervous control of foetal heart. There is not a unique method to compute short term variability of the FHR but different formulas have been proposed and are employed in clinical and scientific environments: this leads to different evaluations and makes difficult comparative studies. Nine short term variability indexes: Arduini, Dalton, Organ, Sonicaid 8000, Van Geijn, Yeh, Zugaib a modified version of Arduini index and Standard Deviation were considered and compared to test their robustness in CTG applications. A large set of synthetic foetal heart rate series with known features were used to compare indexes performances. Different amounts of variability, mean foetal heart rate, storage rates, baseline variations were considered. The different indexes were in particular tested for their capability to recognise short term heart rate variability variation, their dependence on heart rate signal storage rate (as those provided by commercial cardiotocographic devices), on mean value of the foetal heart rate and on modifications of the floatingline, such in case of accelerations or decelerations. Concise statistical parameters relative to indexes scores were presented in comparative tables. Results indicate that although the indexes are able to recognise STV variation, they show substantial differences in magnitude and some in sensibility. Results depend on the frequency used to acquire and store FHR data (depending on devices); in general, the lower is data rate the more degraded are the results. Furthermore, results differently depend on FHR mean, some for their intrinsic definition; differences arise also in correspondences of accelerations and decelerations. Our results demonstrate that only indexes which refer directly to differences in FHR values, such as Organ and SD indexes, not show dependence on FHR mean. The use of the Standard Deviation index may provide efficient information while showing independence from the considered variables. Indexes performance in case of real cardiotocographic signals were also presented as examples.

KW - Cardiotocography

KW - Foetal heart rate

KW - Short term variability

UR - http://www.scopus.com/inward/record.url?scp=59649119146&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=59649119146&partnerID=8YFLogxK

U2 - 10.1016/j.compbiomed.2008.11.010

DO - 10.1016/j.compbiomed.2008.11.010

M3 - Article

C2 - 19193367

AN - SCOPUS:59649119146

VL - 39

SP - 106

EP - 118

JO - Computers in Biology and Medicine

JF - Computers in Biology and Medicine

SN - 0010-4825

IS - 2

ER -