Comprehensive genomic access to vector integration in clinical gene therapy

Richard Gabriel, Ralph Eckenberg, Anna Paruzynski, Cynthia C. Bartholomae, Ali Nowrouzi, Anne Arens, Steven J. Howe, Alessandra Recchia, Claudia Cattoglio, Wei Wang, Katrin Faber, Kerstin Schwarzwaelder, Romy Kirsten, Annette Deichmann, Claudia R. Ball, Kamaljit S. Balaggan, Rafael J. Yá̃ez-Mũoz, Robin R. Ali, H. Bobby Gaspar, Luca BiascoAlessandro Aiuti, Daniela Cesana, Eugenio Montini, Luigi Naldini, Odile Cohen-Haguenauer, Fulvio Mavilio, Adrian J. Thrasher, Hanno Glimm, Christof Von Kalle, William Saurin, Manfred Schmidt

Research output: Contribution to journalArticlepeer-review


Retroviral vectors have induced subtle clonal skewing in many gene therapy patients and severe clonal proliferation and leukemia in some of them, emphasizing the need for comprehensive integration site analyses to assess the biosafety and genomic pharmacokinetics of vectors and clonal fate of gene-modified cells in vivo. Integration site analyses such as linear amplification-mediated PCR (LAM-PCR) require a restriction digest generating unevenly small fragments of the genome. Here we show that each restriction motif allows for identification of only a fraction of all genomic integrants, hampering the understanding and prediction of biological consequences after vector insertion. We developed a model to define genomic access to the viral integration site that provides optimal restriction motif combinations and minimizes the percentage of nonaccessible insertion loci. We introduce a new nonrestrictive LAM-PCR approach that has superior capabilities for comprehensive unbiased integration site retrieval in preclinical and clinical samples independent of restriction motifs and amplification inefficiency.

Original languageEnglish
Pages (from-to)1431-1436
Number of pages6
JournalNature Medicine
Issue number12
Publication statusPublished - Dec 2009

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)


Dive into the research topics of 'Comprehensive genomic access to vector integration in clinical gene therapy'. Together they form a unique fingerprint.

Cite this