TY - GEN
T1 - Computational study of rhythm propagation induced by TMS stimuli in different brain regions
AU - Cona, Filippo
AU - Zavaglia, Melissa
AU - Massimini, Marcello
AU - Rosanova, Mario
AU - Ursino, Mauro
PY - 2012
Y1 - 2012
N2 - Recent data [1] suggest that different regions in the brain may exhibit distinct rhythms when perturbed by Transcranial Magnetic Stimulation (TMS). Knowledge of these rhythms may be of value to understand how the brain realizes its functions and to assess brain connectivity. In this work we implemented a neural mass model [2] of three interconnected cortical regions (Brodmann Area (BA) 19 (occipital lobe), BA 7 (parietal lobe) and BA 6 (frontal lobe)) to fit the impulse responses in three ROIs during an experiment of TMS stimulation on a single subject. First, the natural rhythm of each region was mimicked acting on the local parameters, which reproduce the number of synaptic contacts among neural populations. Then, rhythm propagation from one region to another was simulated (at three different intensities of TMS stimulation) acting on infra-region connectivity parameters. Results show that the model can reproduce the natural rhythms of the three regions, and most rhythm changes induced by stimulation of another region, by using quite a simple connectivity pattern. This pattern is scarcely affected by the stimulus intensity.
AB - Recent data [1] suggest that different regions in the brain may exhibit distinct rhythms when perturbed by Transcranial Magnetic Stimulation (TMS). Knowledge of these rhythms may be of value to understand how the brain realizes its functions and to assess brain connectivity. In this work we implemented a neural mass model [2] of three interconnected cortical regions (Brodmann Area (BA) 19 (occipital lobe), BA 7 (parietal lobe) and BA 6 (frontal lobe)) to fit the impulse responses in three ROIs during an experiment of TMS stimulation on a single subject. First, the natural rhythm of each region was mimicked acting on the local parameters, which reproduce the number of synaptic contacts among neural populations. Then, rhythm propagation from one region to another was simulated (at three different intensities of TMS stimulation) acting on infra-region connectivity parameters. Results show that the model can reproduce the natural rhythms of the three regions, and most rhythm changes induced by stimulation of another region, by using quite a simple connectivity pattern. This pattern is scarcely affected by the stimulus intensity.
KW - Cortical rhythms
KW - Neural mass models
KW - Transcranial magnetic stimulation
UR - http://www.scopus.com/inward/record.url?scp=84858068970&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84858068970&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-27534-0_26
DO - 10.1007/978-3-642-27534-0_26
M3 - Conference contribution
AN - SCOPUS:84858068970
SN - 9783642275333
VL - 399
T3 - Studies in Computational Intelligence
SP - 389
EP - 403
BT - Studies in Computational Intelligence
ER -