Conditional entropy approach for the evaluation of the coupling strength

Alberto Porta, G. Baselli, F. Lombardi, N. Montano, A. Malliani, S. Cerutti

Research output: Contribution to journalArticle

Abstract

A method that enables measurement of the degree of coupling between two signals is presented. The method is based on the definition of an uncoupling function calculating, by means of entropy rates, the minimum amount of independent information (i.e. the information carried by one signal which cannot be derived from the other). An estimator of the uncoupling function able to deal with short segments of data (a few hundred samples) is proposed, thus enabling the method to be used for usual experimental recordings. A synchronisation index is derived from the estimate of the uncoupling function by means of a minimisation procedure. It quantifies the maximum amount of information exchanged between the two signals. Simulations in which non-linear coordination schemes are produced and changes in the coupling strength are artificially induced are used to check the ability of the proposed index to measure the degree of synchronisation between signals. The synchronisation analysis is utilised to measure the coupling strength between the beat-to-beat variability of the sympathetic discharge and ventilation in decerebrate artificially ventilated cats and the degree of synchronisation between the beat-to-beat variability of the heart period and ventricular repolarisation interval in normal subjects and myocardial infarction patients. The sympathetic discharge and ventilation are strongly coupled and the coupling strength is not affected by manoeuvres capable of increasing or depressing sympathetic activity. The synchronisation is lost after spinalisation. The synchronisation analysis confirms that the heart period and ventricular repolarisation interval are well coordinated. In normal subjects, the synchronisation index is not modified by experimental conditions inducing changes in the sympathovagal balance. On the contrary, it strongly decreases after myocardial infarction, thus detecting and measuring the uncoupling between the heart period and ventricular repolarisation interval.

Original languageEnglish
Pages (from-to)119-129
Number of pages11
JournalBiological Cybernetics
Volume81
Issue number2
Publication statusPublished - 1999

Fingerprint

Entropy
Synchronization
Ventilation
Myocardial Infarction
Cats

ASJC Scopus subject areas

  • Biophysics

Cite this

Conditional entropy approach for the evaluation of the coupling strength. / Porta, Alberto; Baselli, G.; Lombardi, F.; Montano, N.; Malliani, A.; Cerutti, S.

In: Biological Cybernetics, Vol. 81, No. 2, 1999, p. 119-129.

Research output: Contribution to journalArticle

@article{fd45557bf55647e1857b7468eb91fa49,
title = "Conditional entropy approach for the evaluation of the coupling strength",
abstract = "A method that enables measurement of the degree of coupling between two signals is presented. The method is based on the definition of an uncoupling function calculating, by means of entropy rates, the minimum amount of independent information (i.e. the information carried by one signal which cannot be derived from the other). An estimator of the uncoupling function able to deal with short segments of data (a few hundred samples) is proposed, thus enabling the method to be used for usual experimental recordings. A synchronisation index is derived from the estimate of the uncoupling function by means of a minimisation procedure. It quantifies the maximum amount of information exchanged between the two signals. Simulations in which non-linear coordination schemes are produced and changes in the coupling strength are artificially induced are used to check the ability of the proposed index to measure the degree of synchronisation between signals. The synchronisation analysis is utilised to measure the coupling strength between the beat-to-beat variability of the sympathetic discharge and ventilation in decerebrate artificially ventilated cats and the degree of synchronisation between the beat-to-beat variability of the heart period and ventricular repolarisation interval in normal subjects and myocardial infarction patients. The sympathetic discharge and ventilation are strongly coupled and the coupling strength is not affected by manoeuvres capable of increasing or depressing sympathetic activity. The synchronisation is lost after spinalisation. The synchronisation analysis confirms that the heart period and ventricular repolarisation interval are well coordinated. In normal subjects, the synchronisation index is not modified by experimental conditions inducing changes in the sympathovagal balance. On the contrary, it strongly decreases after myocardial infarction, thus detecting and measuring the uncoupling between the heart period and ventricular repolarisation interval.",
author = "Alberto Porta and G. Baselli and F. Lombardi and N. Montano and A. Malliani and S. Cerutti",
year = "1999",
language = "English",
volume = "81",
pages = "119--129",
journal = "Biological Cybernetics",
issn = "0340-1200",
publisher = "Springer Verlag",
number = "2",

}

TY - JOUR

T1 - Conditional entropy approach for the evaluation of the coupling strength

AU - Porta, Alberto

AU - Baselli, G.

AU - Lombardi, F.

AU - Montano, N.

AU - Malliani, A.

AU - Cerutti, S.

PY - 1999

Y1 - 1999

N2 - A method that enables measurement of the degree of coupling between two signals is presented. The method is based on the definition of an uncoupling function calculating, by means of entropy rates, the minimum amount of independent information (i.e. the information carried by one signal which cannot be derived from the other). An estimator of the uncoupling function able to deal with short segments of data (a few hundred samples) is proposed, thus enabling the method to be used for usual experimental recordings. A synchronisation index is derived from the estimate of the uncoupling function by means of a minimisation procedure. It quantifies the maximum amount of information exchanged between the two signals. Simulations in which non-linear coordination schemes are produced and changes in the coupling strength are artificially induced are used to check the ability of the proposed index to measure the degree of synchronisation between signals. The synchronisation analysis is utilised to measure the coupling strength between the beat-to-beat variability of the sympathetic discharge and ventilation in decerebrate artificially ventilated cats and the degree of synchronisation between the beat-to-beat variability of the heart period and ventricular repolarisation interval in normal subjects and myocardial infarction patients. The sympathetic discharge and ventilation are strongly coupled and the coupling strength is not affected by manoeuvres capable of increasing or depressing sympathetic activity. The synchronisation is lost after spinalisation. The synchronisation analysis confirms that the heart period and ventricular repolarisation interval are well coordinated. In normal subjects, the synchronisation index is not modified by experimental conditions inducing changes in the sympathovagal balance. On the contrary, it strongly decreases after myocardial infarction, thus detecting and measuring the uncoupling between the heart period and ventricular repolarisation interval.

AB - A method that enables measurement of the degree of coupling between two signals is presented. The method is based on the definition of an uncoupling function calculating, by means of entropy rates, the minimum amount of independent information (i.e. the information carried by one signal which cannot be derived from the other). An estimator of the uncoupling function able to deal with short segments of data (a few hundred samples) is proposed, thus enabling the method to be used for usual experimental recordings. A synchronisation index is derived from the estimate of the uncoupling function by means of a minimisation procedure. It quantifies the maximum amount of information exchanged between the two signals. Simulations in which non-linear coordination schemes are produced and changes in the coupling strength are artificially induced are used to check the ability of the proposed index to measure the degree of synchronisation between signals. The synchronisation analysis is utilised to measure the coupling strength between the beat-to-beat variability of the sympathetic discharge and ventilation in decerebrate artificially ventilated cats and the degree of synchronisation between the beat-to-beat variability of the heart period and ventricular repolarisation interval in normal subjects and myocardial infarction patients. The sympathetic discharge and ventilation are strongly coupled and the coupling strength is not affected by manoeuvres capable of increasing or depressing sympathetic activity. The synchronisation is lost after spinalisation. The synchronisation analysis confirms that the heart period and ventricular repolarisation interval are well coordinated. In normal subjects, the synchronisation index is not modified by experimental conditions inducing changes in the sympathovagal balance. On the contrary, it strongly decreases after myocardial infarction, thus detecting and measuring the uncoupling between the heart period and ventricular repolarisation interval.

UR - http://www.scopus.com/inward/record.url?scp=0033174895&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033174895&partnerID=8YFLogxK

M3 - Article

C2 - 10481240

AN - SCOPUS:0033174895

VL - 81

SP - 119

EP - 129

JO - Biological Cybernetics

JF - Biological Cybernetics

SN - 0340-1200

IS - 2

ER -