Constitutive STAT5 phosphorylation in CD34+ cells of patients with primary myelofibrosis: Correlation with driver mutation status and disease severity

Carlotta Abbà, Rita Campanelli, Paolo Catarsi, Laura Villani, Vittorio Abbonante, Melania Antonietta Sesta, Giovanni Barosi, Vittorio Rosti, Margherita Massa

Research output: Contribution to journalArticle

Abstract

Primary Myelofibrosis (PMF) is a myeloproliferative disorder associated with JAK2V617F, Calreticulin (CALR) indels, and MPLW515L/K mutations activating the tyrosine kinase JAK2 and its downstream signaling pathway. The nature of signaling abnormalities in primary cells from PMF patients is poorly understood, since most of the work has been performed in cell lines or animal models. By flow cytometry we measured constitutive and cytokine induced phosphorylation of STAT5, STAT3, and ERK1/2 in circulating CD34+ cells from 57 patients with PMF (20 with prefibrotic-PMF) and 13 healthy controls (CTRLs). Levels of constitutive and TPO induced p-STAT5, and IL6 induced p-STAT3 were higher in patients than in CTRLs. Constitutive p-STAT5 values were lower in CALR than homozygous JAK2V617F mutated CD34+ cells from PMF patients. Moreover, constitutive p-STAT5 and IL6 induced p-STAT3 values correlated directly with circulating CD34+ cell number/L, and inversely with the frequency of circulating CD34+ cells expressing CXCR4. Constitutive p-STAT5 values of CD34+ cells were also inversely correlated with hemoglobin levels. When the patients were divided according with presence/absence of JAK2V617F mutation, all the correlations described characterized the JAK2V617F+ patients with prefibrotic-PMF (P-PMF). In conclusion, increased constitutive p-STAT5 and IL6 induced p-STAT3 values in circulating CD34+ cells characterize patients with PMF. Constitutive p-STAT5 and IL6 induced p-STAT3 values correlate with circulating CD34+ cell number/L, the frequency of circulating CD34+ cells expressing CXCR4 and hemoglobin levels within the prefibrotic JAK2V617F+ patient population. Our data point toward a complex activation of STAT5-dependent pathways in the stem/progenitor cell compartment, that characterize the phenotypic diversity of PMF.

Original languageEnglish
Article numbere0220189
JournalPLoS One
Volume14
Issue number8
DOIs
Publication statusPublished - Jan 1 2019

Fingerprint

Primary Myelofibrosis
Phosphorylation
disease severity
Interleukin-6
phosphorylation
Cells
Calreticulin
mutation
Mutation
Hemoglobins
cells
calreticulin
Flow cytometry
Stem cells
Protein-Tyrosine Kinases
Animals
Stem Cells
stem cells
Cell Count
Chemical activation

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Cite this

Constitutive STAT5 phosphorylation in CD34+ cells of patients with primary myelofibrosis : Correlation with driver mutation status and disease severity. / Abbà, Carlotta; Campanelli, Rita; Catarsi, Paolo; Villani, Laura; Abbonante, Vittorio; Sesta, Melania Antonietta; Barosi, Giovanni; Rosti, Vittorio; Massa, Margherita.

In: PLoS One, Vol. 14, No. 8, e0220189, 01.01.2019.

Research output: Contribution to journalArticle

@article{dbbae6f8c505420c8e7d02a77510b114,
title = "Constitutive STAT5 phosphorylation in CD34+ cells of patients with primary myelofibrosis: Correlation with driver mutation status and disease severity",
abstract = "Primary Myelofibrosis (PMF) is a myeloproliferative disorder associated with JAK2V617F, Calreticulin (CALR) indels, and MPLW515L/K mutations activating the tyrosine kinase JAK2 and its downstream signaling pathway. The nature of signaling abnormalities in primary cells from PMF patients is poorly understood, since most of the work has been performed in cell lines or animal models. By flow cytometry we measured constitutive and cytokine induced phosphorylation of STAT5, STAT3, and ERK1/2 in circulating CD34+ cells from 57 patients with PMF (20 with prefibrotic-PMF) and 13 healthy controls (CTRLs). Levels of constitutive and TPO induced p-STAT5, and IL6 induced p-STAT3 were higher in patients than in CTRLs. Constitutive p-STAT5 values were lower in CALR than homozygous JAK2V617F mutated CD34+ cells from PMF patients. Moreover, constitutive p-STAT5 and IL6 induced p-STAT3 values correlated directly with circulating CD34+ cell number/L, and inversely with the frequency of circulating CD34+ cells expressing CXCR4. Constitutive p-STAT5 values of CD34+ cells were also inversely correlated with hemoglobin levels. When the patients were divided according with presence/absence of JAK2V617F mutation, all the correlations described characterized the JAK2V617F+ patients with prefibrotic-PMF (P-PMF). In conclusion, increased constitutive p-STAT5 and IL6 induced p-STAT3 values in circulating CD34+ cells characterize patients with PMF. Constitutive p-STAT5 and IL6 induced p-STAT3 values correlate with circulating CD34+ cell number/L, the frequency of circulating CD34+ cells expressing CXCR4 and hemoglobin levels within the prefibrotic JAK2V617F+ patient population. Our data point toward a complex activation of STAT5-dependent pathways in the stem/progenitor cell compartment, that characterize the phenotypic diversity of PMF.",
author = "Carlotta Abb{\`a} and Rita Campanelli and Paolo Catarsi and Laura Villani and Vittorio Abbonante and Sesta, {Melania Antonietta} and Giovanni Barosi and Vittorio Rosti and Margherita Massa",
year = "2019",
month = "1",
day = "1",
doi = "10.1371/journal.pone.0220189",
language = "English",
volume = "14",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "8",

}

TY - JOUR

T1 - Constitutive STAT5 phosphorylation in CD34+ cells of patients with primary myelofibrosis

T2 - Correlation with driver mutation status and disease severity

AU - Abbà, Carlotta

AU - Campanelli, Rita

AU - Catarsi, Paolo

AU - Villani, Laura

AU - Abbonante, Vittorio

AU - Sesta, Melania Antonietta

AU - Barosi, Giovanni

AU - Rosti, Vittorio

AU - Massa, Margherita

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Primary Myelofibrosis (PMF) is a myeloproliferative disorder associated with JAK2V617F, Calreticulin (CALR) indels, and MPLW515L/K mutations activating the tyrosine kinase JAK2 and its downstream signaling pathway. The nature of signaling abnormalities in primary cells from PMF patients is poorly understood, since most of the work has been performed in cell lines or animal models. By flow cytometry we measured constitutive and cytokine induced phosphorylation of STAT5, STAT3, and ERK1/2 in circulating CD34+ cells from 57 patients with PMF (20 with prefibrotic-PMF) and 13 healthy controls (CTRLs). Levels of constitutive and TPO induced p-STAT5, and IL6 induced p-STAT3 were higher in patients than in CTRLs. Constitutive p-STAT5 values were lower in CALR than homozygous JAK2V617F mutated CD34+ cells from PMF patients. Moreover, constitutive p-STAT5 and IL6 induced p-STAT3 values correlated directly with circulating CD34+ cell number/L, and inversely with the frequency of circulating CD34+ cells expressing CXCR4. Constitutive p-STAT5 values of CD34+ cells were also inversely correlated with hemoglobin levels. When the patients were divided according with presence/absence of JAK2V617F mutation, all the correlations described characterized the JAK2V617F+ patients with prefibrotic-PMF (P-PMF). In conclusion, increased constitutive p-STAT5 and IL6 induced p-STAT3 values in circulating CD34+ cells characterize patients with PMF. Constitutive p-STAT5 and IL6 induced p-STAT3 values correlate with circulating CD34+ cell number/L, the frequency of circulating CD34+ cells expressing CXCR4 and hemoglobin levels within the prefibrotic JAK2V617F+ patient population. Our data point toward a complex activation of STAT5-dependent pathways in the stem/progenitor cell compartment, that characterize the phenotypic diversity of PMF.

AB - Primary Myelofibrosis (PMF) is a myeloproliferative disorder associated with JAK2V617F, Calreticulin (CALR) indels, and MPLW515L/K mutations activating the tyrosine kinase JAK2 and its downstream signaling pathway. The nature of signaling abnormalities in primary cells from PMF patients is poorly understood, since most of the work has been performed in cell lines or animal models. By flow cytometry we measured constitutive and cytokine induced phosphorylation of STAT5, STAT3, and ERK1/2 in circulating CD34+ cells from 57 patients with PMF (20 with prefibrotic-PMF) and 13 healthy controls (CTRLs). Levels of constitutive and TPO induced p-STAT5, and IL6 induced p-STAT3 were higher in patients than in CTRLs. Constitutive p-STAT5 values were lower in CALR than homozygous JAK2V617F mutated CD34+ cells from PMF patients. Moreover, constitutive p-STAT5 and IL6 induced p-STAT3 values correlated directly with circulating CD34+ cell number/L, and inversely with the frequency of circulating CD34+ cells expressing CXCR4. Constitutive p-STAT5 values of CD34+ cells were also inversely correlated with hemoglobin levels. When the patients were divided according with presence/absence of JAK2V617F mutation, all the correlations described characterized the JAK2V617F+ patients with prefibrotic-PMF (P-PMF). In conclusion, increased constitutive p-STAT5 and IL6 induced p-STAT3 values in circulating CD34+ cells characterize patients with PMF. Constitutive p-STAT5 and IL6 induced p-STAT3 values correlate with circulating CD34+ cell number/L, the frequency of circulating CD34+ cells expressing CXCR4 and hemoglobin levels within the prefibrotic JAK2V617F+ patient population. Our data point toward a complex activation of STAT5-dependent pathways in the stem/progenitor cell compartment, that characterize the phenotypic diversity of PMF.

UR - http://www.scopus.com/inward/record.url?scp=85070242003&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85070242003&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0220189

DO - 10.1371/journal.pone.0220189

M3 - Article

AN - SCOPUS:85070242003

VL - 14

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 8

M1 - e0220189

ER -