Contrast cancellation technique applied to digital x-ray imaging using silicon strip detectors

C. Avila, J. Lopez, J. C. Sanabria, G. Baldazzi, D. Bollini, M. Gombia, A. E. Cabal, C. Ceballos, A. Diaz Garcia, M. Gambaccini, A. Taibi, A. Sarnelli, A. Tuffanelli, P. Giubellino, A. Marzari-Chiesa, F. Prino, E. Tomassi, P. Grybos, M. Idzik, K. SwientekP. Wiacek, L. M. Montaño, L. Ramello, M. Sitta

Research output: Contribution to journalArticlepeer-review

Abstract

Dual-energy mammographic imaging experimental tests have been performed using a compact dichromatic imaging system based on a conventional x-ray tube, a mosaic crystal, and a 384-strip silicon detector equipped with full-custom electronics with single photon counting capability. For simulating mammal tissue, a three-component phantom, made of Plexiglass, polyethylene, and water, has been used. Images have been collected with three different pairs of x-ray energies: 16-32 keV, 18-36 keV, and 20-40 keV. A Monte Carlo simulation of the experiment has also been carried out using the MCNP-4C transport code. The Alvarez-Macovski algorithm has been applied both to experimental and simulated data to remove the contrast between two of the phantom materials so as to enhance the visibility of the third one.

Original languageEnglish
Pages (from-to)3755-3766
Number of pages12
JournalMedical Physics
Volume32
Issue number12
DOIs
Publication statusPublished - 2005

Keywords

  • Dual-energy x-ray imaging
  • Mammography
  • MCNP simulations
  • Silicon microstrip detectors

ASJC Scopus subject areas

  • Biophysics

Fingerprint Dive into the research topics of 'Contrast cancellation technique applied to digital x-ray imaging using silicon strip detectors'. Together they form a unique fingerprint.

Cite this