Abstract
Original language | English |
---|---|
Pages (from-to) | 168-187 |
Number of pages | 20 |
Journal | Coord. Chem. Rev. |
Volume | 397 |
DOIs | |
Publication status | Published - 2019 |
Keywords
- Alzheimer's disease
- ATP7B
- Copper
- Kd, ceruloplasmin
- β-Amyloid
Fingerprint Dive into the research topics of 'Copper imbalance in Alzheimer's disease: Convergence of the chemistry and the clinic: Coordination Chemistry Reviews'. Together they form a unique fingerprint.
Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Copper imbalance in Alzheimer's disease: Convergence of the chemistry and the clinic : Coordination Chemistry Reviews. / Kepp, K.P.; Squitti, R.
In: Coord. Chem. Rev., Vol. 397, 2019, p. 168-187.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Copper imbalance in Alzheimer's disease: Convergence of the chemistry and the clinic
T2 - Coordination Chemistry Reviews
AU - Kepp, K.P.
AU - Squitti, R.
N1 - Cited By :1 Export Date: 10 February 2020 CODEN: CCHRA Correspondence Address: Kepp, K.P.; Technical University of Denmark, DTU ChemistryDenmark; email: kpj@kemi.dtu.dk Funding details: Alzheimer's Association, AA Funding details: Ministry of Communications and Information, MCI Funding text 1: R. S. acknowledges support from the Alzheimer's Association under the program "Part the Cloud: Translational Research Funding for Alzheimer's Disease (PTC)", Project Title: Extenzin-based therapy for MCI subjects. Appendix A References: Blennow, K., de Leon, M.J., Zetterberg, H., Alzheimer's disease (2015) Lancet, 368, pp. 387-403; Nichols, E., Szoeke, C.E.I., Vollset, S.E., Abbasi, N., Abd-Allah, F., Abdela, J., Aichour, M.T.E., Murray, C.J.L., Global, regional, and national burden of Alzheimer's disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016 (2019) Lancet Neurol., 18, pp. 88-106; Goedert, M., Spillantini, M.G., A century of Alzheimer's disease (2006) Science, 314, pp. 777-781; Sorrentino, P., Iuliano, A., Polverino, A., Jacini, F., Sorrentino, G., The dark sides of amyloid in Alzheimer's disease pathogenesis (2014) FEBS Lett., 588, pp. 641-652; Rosenblum, W.I., Why Alzheimer trials fail: removing soluble oligomeric beta amyloid is essential, inconsistent, and difficult (2014) Neurobiol. Aging, 35, pp. 969-974; Herrup, K., The case for rejecting the amyloid cascade hypothesis (2015) Nat. Neurosci., 794-799; Tiwari, M.K., Kepp, K.P., β-Amyloid pathogenesis: chemical properties versus cellular levels (2016) Alzheimer's Dement., 12, pp. 184-194; De Strooper, B., Lessons from a failed γ-secretase Alzheimer trial (2014) Cell, 159, pp. 721-726; Veugelen, S., Saito, T., Saido, T.C., Chávez-Gutiérrez, L., De Strooper, B., Familial Alzheimer's disease mutations in presenilin generate amyloidogenic aβ peptide seeds (2016) Neuron, 90, pp. 410-416; Kepp, K.P., Ten challenges of the amyloid hypothesis of Alzheimer's disease (2017) J. Alzheimer's Dis., 55, pp. 447-457; Karlawish, J., Addressing the ethical, policy, and social challenges of preclinical Alzheimer disease (2011) Neurology, 77, pp. 1487-1493; Karantzoulis, S., Galvin, J.E., Distinguishing Alzheimer's disease from other major forms of dementia (2011) Expert Rev. Neurother., 11, pp. 1579-1591; McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack, C.R., Jr., Kawas, C.H., Klunk, W.E., Phelps, C.H., The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease (2011) Alzheimer's Dement., 7, pp. 263-269; Kepp, K.P., Bioinorganic chemistry of Alzheimer's disease (2012) Chem. Rev., 112, pp. 5193-5239; Hardy, J., Selkoe, D.J., The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics (2002) Science, 297, pp. 353-356; Masters, C.L., Selkoe, D.J., Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer disease (2012) Cold Spring Harb. Perspect. Med., 2, p. a006262; Lovell, M.A., Robertson, J.D., Teesdale, W.J., Campbell, J.L., Markesbery, W.R., Copper, iron and zinc in Alzheimer's disease senile plaques (1998) J. Neurol. Sci., 158, pp. 47-52; Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D., Jones, E., Alzheimer's disease (2011) Lancet, 377, pp. 1019-1031; Goate, A., Chartier-Harlin, M.C., Mullan, M., Brown, J., Crawford, F., Fidani, L., Giuffra, L., James, L., Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease (1991) Nature, 349, pp. 704-706; Wolfe, M.S., Processive proteolysis by γ-secretase and the mechanism of Alzheimer's disease (2012) Biol. Chem., 393, pp. 899-905; Vassar, R., Bennett, B.D., Babu-Khan, S., Kahn, S., Mendiaz, E.A., Denis, P., Teplow, D.B., Citron, M., Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE (1999) Science, 286, pp. 735-741; Sherrington, R., Rogaev, E.I., Liang, Y., Rogaeva, E.A., Levesque, G., Ikeda, M., Chi, H., St George-Hyslop, P.H., Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease (1995) Nature, 375, pp. 754-760; Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D.M., Oshima, J., Pettingell, W.H., Yu, C.E., Wang, K., Candidate gene for the chromosome 1 familial Alzheimer's disease locus (1995) Science, 269, pp. 973-977; Hollingworth, P., Harold, D., Jones, L., Owen, M.J., Williams, J., Alzheimer's disease genetics: current knowledge and future challenges (2011) Int. J. Geriatr. Psychiatry, 26, pp. 793-802; Ryman, D.C., Acosta-Baena, N., Aisen, P.S., Bird, T., Danek, A., Fox, N.C., Goate, A., Bateman, R.J., Symptom onset in autosomal dominant Alzheimer disease: a systematic review and meta-analysis (2014) Neurology, 83, pp. 253-260; De Strooper, B., Saftig, P., Craessaerts, K., Vanderstichele, H., Guhde, G., Annaert, W., Von Figura, K., Van Leuven, F., Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein (1998) Nature, 391, pp. 387-390; Hardy, J., Alzheimer's disease: The amyloid cascade hypothesis – an update and reappraisal (2006) J. Alzheimer's Dis., 9, pp. 151-153; Karran, E., Mercken, M., De Strooper, B., The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics (2011) Nat. Rev. Drug Discov., 10, pp. 698-712; Gibson, G.E., Huang, H.-M., Oxidative stress in Alzheimer's disease (2005) Neurobiol. Aging, 26, pp. 575-578; Ferrer, I., Altered mitochondria, energy metabolism, voltage-dependent anion channel, and lipid rafts converge to exhaust neurons in Alzheimer's disease (2009) J. Bioenerg. Biomembr., 41, pp. 425-431; De la Monte, S.M., Type 3 diabetes is sporadic Alzheimer's disease: mini-review (2014) Eur. Neuropsychopharmacol., 24, pp. 1-7; Zündorf, G., Reiser, G., Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection (2011) Antioxid. Redox Signal., 14, pp. 1275-1288; Chakroborty, S., Stutzmann, G.E., Early calcium dysregulation in Alzheimer's disease: setting the stage for synaptic dysfunction (2011) Sci. China Life Sci., 54, pp. 752-762; Small, D.H., Dysregulation of calcium homeostasis in Alzheimer's disease (2009) Neurochem. Res., 34, pp. 1824-1829; Greenough, M.A., Camakaris, J., Bush, A.I., Metal dyshomeostasis and oxidative stress in Alzheimer's disease (2013) Neurochem. Int., 62, pp. 540-555; Robertson, J.D., Crafford, A.M., Markesbery, W.R., Lovell, M.A., Disruption of zinc homeostasis in Alzheimer's disease (2002) Nucl. Instruments Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms., 189, pp. 454-458; Scott, L.E., Orvig, C., Medicinal inorganic chemistry approaches to passivation and removal of aberrant metal ions in disease (2009) Chem. Rev., 109, pp. 4885-4910; Zatta, P., Drago, D., Zambenedetti, P., Bolognin, S., Nogara, E., Peruffo, A., Cozzi, B., Accumulation of copper and other metal ions, and metallothionein I/II expression in the bovine brain as a function of aging (2008) J. Chem. Neuroanat., 36, pp. 1-5; Pal, A., Siotto, M., Prasad, R., Squitti, R., Towards a unified vision of copper involvement in Alzheimer's disease: a review connecting basic, experimental, and clinical research (2015) J. Alzheimer's Dis., 44, pp. 343-354; Brewer, G.J., Copper excess, zinc deficiency, and cognition loss in Alzheimer's disease (2012) BioFactors, 38, pp. 107-113; Brewer, G.J., Kanzer, S.H., Zimmerman, E.A., Molho, E.S., Celmins, D.F., Heckman, S.M., Dick, R., Subclinical zinc deficiency in Alzheimer's disease and Parkinson's disease (2010) Am. J. Alzheimer's Dis. Other Demen., 25, pp. 572-575; Kozlowski, H., Luczkowski, M., Remelli, M., Valensin, D., Copper, zinc and iron in neurodegenerative diseases (Alzheimer's, Parkinson's and prion diseases) (2012) Coord. Chem. Rev., 256, pp. 2129-2141; Mascitelli, L., Pezzetta, F., Goldstein, M.R., Iron, type 2 diabetes mellitus, and Alzheimer's disease (2009) Cell. Mol. Life Sci., 66, p. 2943; Kosik, K.S., Tau protein and Alzheimer's disease (1990) Curr. Opin. Cell Biol., 2, pp. 101-104; Kosik, K.S., Joachim, C.L., Selkoe, D.J., Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease (1986) Proc. Natl. Acad. Sci. U.S.A., 83, pp. 4044-4048; Maccioni, R.B., Farias, G., Morales, I., Navarrete, L., The revitalized tau hypothesis on Alzheimer's disease (2010) Arch. Med. Res., 41, pp. 226-231; Goedert, M., Tau protein and the neurofibrillary pathology of Alzheimer's disease (1993) Trends Neurosci., 16, pp. 460-465; Bush, A.I., Tanzi, R.E., Therapeutics for Alzheimer's disease based on the metal hypothesis (2008) Neurotherapeutics, 5, pp. 421-432; Bush, A.I., The metal theory of Alzheimer's disease (2013) Rev. Lit. Arts Am., 33, pp. 277-281; Perry, G., Cash, A.D., Smith, M.A., Alzheimer disease and oxidative stress (2002) J. Biomed. Biotechnol., 2, pp. 120-123; Honda, K., Casadesus, G., Petersen, R.B., Perry, G., Smith, M.A., Oxidative stress and redox-active iron in Alzheimer's disease (2004) Ann. N. Y. Acad. Sci., 1012, pp. 179-182; Lu, T., Pan, Y., Kao, S.-Y., Li, C., Kohane, I., Chan, J., Yankner, B.A., Gene regulation and DNA damage in the ageing human brain (2004) Nature, 429, pp. 883-891; Opazo, C.M., Greenough, M.A., Bush, A.I., Copper: from neurotransmission to neuroproteostasis (2014) Front. Aging Neurosci., 6, p. 143. , https://www.frontiersin.org/article/10.3389/fnagi.2014.00143; Vassiliev, V., Harris, Z.L., Zatta, P., Ceruloplasmin in neurodegenerative diseases (2005) Brain Res. Rev., 49, pp. 633-640; Mathys, Z.K., White, A.R., Copper and Alzheimer's disease (2017) Adv. Neurobiol., pp. 199-216; Hureau, C., Coordination of redox active metal ions to the amyloid precursor protein and to amyloid-β peptides involved in Alzheimer disease. Part 1: An overview (2012) Coord. Chem. Rev., 256, pp. 2164-2174; Squitti, R., Polimanti, R., Siotto, M., Bucossi, S., Ventriglia, M., Mariani, S., Vernieri, F., Rossini, P.M., ATP7B variants as modulators of copper dyshomeostasis in Alzheimer's disease (2013) Neuromol. Med., 15, pp. 515-522; Squitti, R., Siotto, M., Arciello, M., Rossi, L., Non-ceruloplasmin bound copper and ATP7B gene variants in Alzheimer's disease (2016) Metallomics, 8, pp. 863-873; Faller, P., Hureau, C., Bioinorganic chemistry of copper and zinc ions coordinated to amyloid-beta peptide (2009) Dalton Trans., pp. 1080-1094; Kepp, K.P., Alzheimer's disease: How metal ions define β-amyloid function (2017) Coord. Chem. Rev., 351, pp. 127-159; Masters, C.L., Gajdusek, D.C., Gibbs, C.J.J., The familial occurrence of Creutzfeldt-Jakob disease and Alzheimer's disease (1981) Brain, 104, pp. 535-558; Glenner, G.G., Wong, C.W., Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein (1984) Biochem. Biophys. Res. Commun., 120, pp. 885-890; Hardy, J.A., Higgins, G.A., Alzheimer's disease: the amyloid cascade hypothesis (1992) Science, 256, pp. 184-185; Teich, A.F., Arancio, O., Is the amyloid hypothesis of Alzheimer's disease therapeutically relevant? (2012) Biochem. J., 446, pp. 165-177; Bateman, R.J., Munsell, L.Y., Morris, J.C., Swarm, R., Yarasheski, K.E., Holtzman, D.M., Human amyloid-beta synthesis and clearance rates as measured in cerebrospinal fluid in vivo (2006) Nat. Med., 12, pp. 856-861; Carter, M.D., Simms, G.A., Weaver, D.F., The development of new therapeutics for Alzheimer's disease (2010) Clin. Pharmacol. Ther., 88, pp. 475-486; Choi, J.-S., Braymer, J.J., Nanga, R.P.R., Ramamoorthy, A., Lim, M.H., Design of small molecules that target metal-Aβ species and regulate metal-induced Aβ aggregation and neurotoxicity (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 21990-21995; DeToma, A.S., Salamekh, S., Ramamoorthy, A., Lim, M.H., Misfolded proteins in Alzheimer's disease and type II diabetes (2012) Chem. Soc. Rev., 41, pp. 608-621; Ramamoorthy, A., Lim, M.H., Structural characterization and inhibition of toxic amyloid-β oligomeric intermediates (2013) Biophys. J., 105, pp. 287-288; Imbimbo, B.P., Giardina, G.A.M., gamma-secretase inhibitors and modulators for the treatment of Alzheimer's disease: disappointments and hopes (2011) Curr. Top. Med. Chem., 11, pp. 1555-1570; Nunan, J., Small, D.H., Regulation of APP cleavage by alpha-, beta- and gamma-secretases (2000) FEBS Lett., 483, pp. 6-10; Tang, N., Somavarapu, A.K., Kepp, K.P., Molecular recipe for γ-secretase modulation from computational analysis of 60 active compounds (2018) ACS Omega, 3, pp. 18078-18088; Golde, T.E., Schneider, L.S., Koo, E.H., Anti-Aβ therapeutics in Alzheimer's disease: the need for a paradigm shift (2011) Neuron, 69, pp. 203-213; Beck, M.W., Derrick, J.S., Kerr, R.A., Oh, S.B., Cho, W.J., Lee, S.J.C., Ji, Y., Lim, M.H., Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer's disease (2016) Nat. Commun., 7, p. 13115; Kang, J., Lee, S.J.C., Nam, J.S., Lee, H.J., Kang, M.-G., Korshavn, K.J., Kim, H.-T., Lim, M.H., An iridium(III) complex as a photoactivatable tool for oxidation of amyloidogenic peptides with subsequent modulation of peptide aggregation (2017) Chem. Eur. J., 23, pp. 1645-1653; Derrick, J.S., Kerr, R.A., Nam, Y., Oh, S.B., Lee, H.J., Earnest, K.G., Suh, N., Lim, M.H., A redox-active, compact molecule for cross-linking amyloidogenic peptides into nontoxic, off-pathway aggregates: in vitro and in vivo efficacy and molecular mechanisms (2015) J. Am. Chem. Soc., 137, pp. 14785-14797; Chávez-Gutiérrez, L., Bammens, L., Benilova, I., Vandersteen, A., Benurwar, M., Borgers, M., Lismont, S., De Strooper, B., The mechanism of γ-secretase dysfunction in familial Alzheimer disease (2012) EMBO J., 31, pp. 2261-2274; Sun, L., Zhou, R., Yang, G., Shi, Y., Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Aβ42 and Aβ40 peptides by γ-secretase (2016) Proc. Natl. Acad. Sci. U.S.A., 114, pp. E476-E485; Takami, M., Nagashima, Y., Sano, Y., Ishihara, S., Morishima-Kawashima, M., Funamoto, S., Ihara, Y., γ-Secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of β-carboxyl terminal fragment (2009) J. Neurosci., 29, pp. 13042-13052; Fukumori, A., Fluhrer, R., Steiner, H., Haass, C., Three-amino acid spacing of presenilin endoproteolysis suggests a general stepwise cleavage of gamma-secretase-mediated intramembrane proteolysis (2010) J. Neurosci., 30, pp. 7853-7862; Haass, C., Kaether, C., Thinakaran, G., Sisodia, S., Trafficking and proteolytic processing of APP (2012) Cold Spring Harb. Perspect. Med., 2, p. a006270; Fernandez, M.A., Klutkowski, J.A., Freret, T., Wolfe, M.S., Alzheimer presenilin-1 mutations dramatically reduce trimming of long amyloid β-peptides (Aβ) by γ-secretase to increase 42-to-40-residue Aβ (2014) J. Biol. Chem., 289, pp. 31043-31052; Cacquevel, M., Aeschbach, L., Houacine, J., Fraering, P.C., Alzheimer's disease-linked mutations in presenilin-1 result in a drastic loss of activity in purified γ-secretase complexes (2012) PLoS One, 7, pp. 1-13; Woodruff, G., Young, J.E., Martinez, F.J., Buen, F., Gore, A., Kinaga, J., Li, Z., Goldstein, L.S.B., The presenilin-1 δE9 mutation results in reduced γ-secretase activity, but not total loss of PS1 function, isogenic human stem cells (2013) Cell Rep., 5, pp. 974-985; Bentahir, M., Nyabi, O., Verhamme, J., Tolia, A., Horre, K., Wiltfang, J., Esselmann, H., De Strooper, B., Presenilin clinical mutations can affect gamma-secretase activity by different mechanisms (2006) J. Neurochem., 96, pp. 732-742; Jan, A., Gokce, O., Luthi-Carter, R., Lashuel, H.A., The ratio of monomeric to aggregated forms of Aβ40 and Aβ42 is an important determinant of amyloid-β aggregation, fibrillogenesis, and toxicity (2008) J. Biol. Chem., 283, pp. 28176-28189; Chiti, F., Dobson, C.M., Protein misfolding, functional amyloid, and human disease (2006) Annu. Rev. Biochem., 75, pp. 333-366; Rauk, A., The chemistry of Alzheimer's disease (2009) Chem. Soc. Rev., 38, pp. 2698-2715; Tiwari, M.K., Kepp, K.P., Modeling the aggregation propensity and toxicity of amyloid-β variants (2015) J. Alzheimer's Dis., 47, pp. 215-229; Somavarapu, A.K., Kepp, K.P., Direct correlation of cell toxicity to conformational ensembles of genetic aβ variants (2015) ACS Chem. Neurosci., 6, pp. 1990-1996; Tang, N., Kepp, K.P., Aβ42/Aβ40 ratios of presenilin 1 mutations correlate with clinical onset of Alzheimer's disease (2018) J. Alzheimer's Dis., 66, pp. 939-945; Aizenstein, H.J., Nebes, R.D., Saxton, J.A., Price, J.C., Mathis, C.A., Tsopelas, N.D., Ziolko, S.K., Klunk, W.E., Frequent amyloid deposition without significant cognitive impairment among the elderly (2008) Arch. Neurol., 65, pp. 1509-1517; Bouwman, F.H., Schoonenboom, N.S.M., Verwey, N.A., van Elk, E.J., Kok, A., Blankenstein, M.A., Scheltens, P., van der Flier, W.M., CSF biomarker levels in early and late onset Alzheimer's disease (2009) Neurobiol. Aging, 30, pp. 1895-1901; Price, J.L., McKeel, D.W.J., Buckles, V.D., Roe, C.M., Xiong, C., Grundman, M., Hansen, L.A., Morris, J.C., Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease (2009) Neurobiol. Aging, 30, pp. 1026-1036; Gomez-Isla, T., Hollister, R., West, H., Mui, S., Growdon, J.H., Petersen, R.C., Parisi, J.E., Hyman, B.T., Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease (1997) Ann. Neurol., 41, pp. 17-24; Schmitz, C., Rutten, B.P.F., Pielen, A., Schafer, S., Wirths, O., Tremp, G., Czech, C., Bayer, T.A., Hippocampal neuron loss exceeds amyloid plaque load in a transgenic mouse model of Alzheimer's disease (2004) Am. J. Pathol., 164, pp. 1495-1502; Yankner, B.A., Dawes, L.R., Fisher, S., Villa-Komaroff, L., Oster-Granite, M.L., Neve, R.L., Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer's disease (1989) Science, 245, pp. 417-420; Kayed, R., Head, E., Thompson, J.L., McIntire, T.M., Milton, S.C., Cotman, C.W., Glabe, C.G., Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis (2003) Science, 300, pp. 486-489; Lesne, S., Koh, M.T., Kotilinek, L., Kayed, R., Glabe, C.G., Yang, A., Gallagher, M., Ashe, K.H., A specific amyloid-beta protein assembly in the brain impairs memory (2006) Nature, 440, pp. 352-357; Hung, L.W., Ciccotosto, G.D., Giannakis, E., Tew, D.J., Perez, K., Masters, C.L., Cappai, R., Barnham, K.J., Amyloid-beta peptide (Aβ) neurotoxicity is modulated by the rate of peptide aggregation: Abeta dimers and trimers correlate with neurotoxicity (2008) J. Neurosci., 28, pp. 11950-11958; Panza, F., Frisardi, V., Seripa, D., Imbimbo, B.P., Sancarlo, D., D'Onofrio, G., Addante, F., Solfrizzi, V., Metabolic Syndrome, Mild Cognitive Impairment and Dementia (2011) Curr. Alzheimer Res., 8, pp. 492-509; Lee, S.J.C., Nam, E., Lee, H.J., Savelieff, M.G., Lim, M.H., Towards an understanding of amyloid-β oligomers: characterization, toxicity mechanisms, and inhibitors (2017) Chem. Soc. Rev., 46, pp. 310-323; Ladiwala, A.R.A., Litt, J., Kane, R.S., Aucoin, D.S., Smith, S.O., Ranjan, S., Davis, J., Tessier, P.M., Conformational differences between two amyloid beta oligomers of similar size and dissimilar toxicity (2012) J. Biol. Chem., 287, pp. 24765-24773; Townsend, M., Shankar, G.M., Mehta, T., Walsh, D.M., Selkoe, D.J., Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a potent role for trimers (2006) J. Physiol., 572, pp. 477-492; Walsh, D.M., Selkoe, D.J., A beta oligomers – a decade of discovery (2007) J. Neurochem., 101, pp. 1172-1184; Haass, C., Selkoe, D.J., Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide (2007) Nat. Rev. Mol. Cell Biol., 8, pp. 101-112; Balch, W.E., Morimoto, R.I., Dillin, A., Kelly, J.W., Adapting proteostasis for disease intervention (2008) Science, 319, pp. 916-919; Götz, J., Eckert, A., Matamales, M., Ittner, L.M., Liu, X., Modes of Aβ toxicity in Alzheimer's disease (2011) Cell. Mol. Life Sci., 68, pp. 3359-3375; Yoshiike, Y., Chui, D.H., Akagi, T., Tanaka, N., Takashima, A., Specific compositions of amyloid-β peptides as the determinant of toxic Aβ-aggregation (2003) J. Biol. Chem., 278, pp. 23648-23655; Lecanu, L., Greeson, J., Papadopoulos, V., Beta-amyloid and oxidative stress jointly induce neuronal death, amyloid deposits, gliosis, and memory impairment in the rat brain (2006) Pharmacology, 76, pp. 19-33; Smith, D.P., Smith, D.G., Curtain, C.C., Boas, J.F., Pilbrow, J.R., Ciccotosto, G.D., Lau, T.L., Barnham, K.J., Copper-mediated amyloid-beta toxicity is associated with an intermolecular histidine bridge (2006) J. Biol. Chem., 281, pp. 15145-15154; Faller, P., Hureau, C., Metal ions in neurodegenerative diseases (2012) Coord. Chem. Rev., 256, pp. 2127-2128; Drew, S.C., Noble, C.J., Masters, C.L., Hanson, G.R., Barnham, K.J., Pleomorphic copper coordination by Alzheimer's disease amyloid-β peptide (2009) J. Am. Chem. Soc., 131, pp. 1195-1207; Glabe, C.G., Common mechanisms of amyloid oligomer pathogenesis in degenerative disease (2006) Neurobiol. Aging, 27, pp. 570-575; Sciacca, M.F.M., Kotler, S.A., Brender, J.R., Chen, J., Lee, D.K., Ramamoorthy, A., Two-step mechanism of membrane disruption by Aβ through membrane fragmentation and pore formation (2012) Biophys. J., 103, pp. 702-710; Arispe, N., Rojas, E., Pollard, H.B., Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum (1993) Proc. Natl. Acad. Sci. U.S.A., 90, pp. 567-571; Quist, A., Doudevski, I., Lin, H., Azimova, R., Ng, D., Frangione, B., Kagan, B., Lal, R., Amyloid ion channels: a common structural link for protein-misfolding disease (2005) Proc. Natl. Acad. Sci. U.S.A., 102, pp. 10427-10432; Brender, J.R., Salamekh, S., Ramamoorthy, A., Membrane disruption and early events in the aggregation of the diabetes related peptide IAPP from a molecular perspective (2012) Acc. Chem. Res., 45, pp. 454-462; Hamley, I.W., The amyloid beta peptide: a chemist's perspective. Role in Alzheimer's and fibrillization (2012) Chem. Rev., 112, pp. 5147-5192; Somavarapu, A.K., Kepp, K.P., The dependence of amyloid-beta dynamics on protein force fields and water models (2015) ChemPhysChem, 16, pp. 3278-3289; Deshpande, A., Mina, E., Glabe, C., Busciglio, J., Different conformations of amyloid beta induce neurotoxicity by distinct mechanisms in human cortical neurons (2006) J. Neurosci., 26, pp. 6011-6018; Crescenzi, O., Tomaselli, S., Guerrini, R., Salvadori, S., D'Ursi, A.M., Temussi, P.A., Picone, D., Solution structure of the Alzheimer amyloid β-peptide (1–42) in an apolar microenvironment: Similarity with a virus fusion domain (2002) Eur. J. Biochem., 269, pp. 5642-5648; Tomaselli, S., Esposito, V., Vangone, P., Van Nuland, N.A.J., Bonvin, A.M.J.J., Guerrini, R., Tancredi, T., Picone, D., The α-to-β conformational transition of Alzheimer's Aβ-(1–42) peptide in aqueous media is reversible: a step by step conformational analysis suggests the location of β conformation seeding (2006) ChemBioChem, 7, pp. 257-267; Rosenman, D.J., Connors, C.R., Chen, W., Wang, C., García, A.E., Aβ monomers transiently sample oligomer and fibril-like configurations: ensemble characterization using a combined MD/NMR approach (2013) J. Mol. Biol., 425, pp. 3338-3359; Coles, M., Bicknell, W., Watson, A.A., Fairlie, D.P., Craik, D.J., Solution structure of amyloid beta-peptide(1–40) in a water-micelle environment (1998) Biochemistry, 37, pp. 11064-11077; Vivekanandan, S., Brender, J.R., Lee, S.Y., Ramamoorthy, A., A partially folded structure of amyloid-β(1–40) in an aqueous environment (2011) Biochem. Biophys. Res. Commun., 411, pp. 312-316; Sticht, H., Bayer, P., Willbold, D., Dames, S., Hilbich, C., Beyreuther, K., Frank, R.W., Rosch, P., Structure of amyloid A4-(1–40)-peptide of Alzheimer's disease (1995) Eur. J. Biochem., 233, pp. 293-298; Kawahara, M., Arispe, N., Kuroda, Y., Rojas, E., Alzheimer's disease amyloid beta-protein forms Zn(2+)-sensitive, cation-selective channels across excised membrane patches from hypothalamic neurons (1997) Biophys. J., 73, pp. 67-75; Rhee, S.K., Quist, A.P., Lal, R., Amyloid beta protein-(1–42) forms calcium-permeable, Zn2+-sensitive channel (1998) J. Biol. Chem., 273, pp. 13379-13382; Arispe, N., Pollard, H.B., Rojas, E., Zn2+ interaction with Alzheimer amyloid beta protein calcium channels (1996) Proc. Natl. Acad. Sci. U.S.A., 93, pp. 1710-1715. , http://www.pnas.org/content/93/4/1710.abstract; Suh, J.-M., Kim, G., Kang, J., Lim, M.H., Strategies employing transition metal complexes to modulate amyloid-β aggregation (2019) Inorg. Chem., 58, pp. 8-17; Pithadia, A.S., Lim, M.H., Metal-associated amyloid-β species in Alzheimer's disease (2012) Curr. Opin. Chem. Biol., 16, pp. 67-73; Hyung, S.-J., DeToma, A.S., Brender, J.R., Lee, S., Vivekanandan, S., Kochi, A., Choi, J.-S., Lim, M.H., Insights into antiamyloidogenic properties of the green tea extract (−)-epigallocatechin-3-gallate toward metal-associated amyloid-β species (2013) Proc. Natl. Acad. Sci. U.S.A., 110, pp. 3743-3748; Rubino, J.T., Franz, K.J., Coordination chemistry of copper proteins: how nature handles a toxic cargo for essential function (2012) J. Inorg. Biochem., 107, pp. 129-143; Gaggelli, E., Kozlowski, H., Valensin, D., Valensin, G., Copper homeostasis and neurodegenerative disorders (Alzheimers, prion, and Parkinsons diseases and amyotrophic lateral sclerosis) (2006) Chem. Rev., 106, pp. 1995-2044; Siotto, M., Squitti, R., Copper imbalance in Alzheimer's disease: overview of the exchangeable copper component in plasma and the intriguing role albumin plays (2018) Coord. Chem. Rev., 371, pp. 86-95; Solomon, E.I., Heppner, D.E., Johnston, E.M., Ginsbach, J.W., Cirera, J., Qayyum, M., Kieber-Emmons, M.T., Tian, L., Copper active sites in biology (2014) Chem. Rev., 114, pp. 3659-3853; Savelieff, M.G., Nam, G., Kang, J., Lee, H.J., Lee, M., Lim, M.H., Development of multifunctional molecules as potential therapeutic candidates for alzheimer's disease, parkinson's disease, and amyotrophic lateral sclerosis in the last decade (2018) Chem. Rev., 119, pp. 1221-1322; Dahms, S.O., Konnig, I., Roeser, D., Guhrs, K.-H., Mayer, M.C., Kaden, D., Multhaup, G., Than, M.E., Metal binding dictates conformation and function of the amyloid precursor protein (APP) E2 domain (2012) J. Mol. Biol., 416, pp. 438-452; Zong, S., Wu, M., Gu, J., Liu, T., Guo, R., Yang, M., Structure of the intact 14-subunit human cytochrome c oxidase (2018) Cell Res., 28, p. 1026; Kong, G.K.W., Adams, J.J., Harris, H.H., Boas, J.F., Curtain, C.C., Galatis, D., Masters, C.L., Parker, M.W., Structural studies of the Alzheimer's amyloid precursor protein copper-binding domain reveal how it binds copper ions (2007) J. Mol. Biol., 367, pp. 148-161; Strange, R.W., Antonyuk, S.V., Hough, M.A., Doucette, P.A., Valentine, J.S., Hasnain, S.S., Variable metallation of human superoxide dismutase: atomic resolution crystal structures of Cu-Zn, Zn-Zn and as-isolated wild-type enzymes (2006) J. Mol. Biol., 356, pp. 1152-1162; Banci, L., Bertini, I., Del Conte, R., D'Onofrio, M., Rosato, A., Solution structure and backbone dynamics of the Cu(I) and apo forms of the second metal-binding domain of the menkes protein ATP7A (2004) Biochemistry, 43, pp. 3396-3403; Barnham, K.J., McKinstry, W.J., Multhaup, G., Galatis, D., Morton, C.J., Curtain, C.C., Williamson, N.A., Cappai, R., Structure of the Alzheimer's disease amyloid precursor protein copper binding domain. A regulator of neuronal copper homeostasis (2003) J. Biol. Chem., 278, pp. 17401-17407; Hidalgo, J., Aschner, M., Zatta, P., Vašák, M., Roles of the metallothionein family of proteins in the central nervous system (2001) Brain Res. Bull., 55, pp. 133-145; Hall, A.C., Young, B.W., Bremner, I., Intestinal metallothionein and the mutual antagonism between copper and zinc in the rat (1979) J. Inorg. Biochem., 11, pp. 57-66; Chung, R.S., Howells, C., Eaton, E.D., Shabala, L., Zovo, K., Palumaa, P., Sillard, R., Ray, S., The native copper-and zinc-binding protein metallothionein blocks copper-mediated Aβ aggregation and toxicity in rat cortical neurons (2010) PLoS One, 5; Oestreicher, P., Cousins, R.J., Copper and zinc absorption in the rat: mechanism of mutual antagonism (1985) J. Nutr., 115, pp. 159-166; Qin, Y., Dittmer, P.J., Park, J.G., Jansen, K.B., Palmer, A.E., Measuring steady-state and dynamic endoplasmic reticulum and Golgi Zn2+ with genetically encoded sensors (2011) Proc. Natl. Acad. Sci. U.S.A., 108, pp. 7351-7356; Takeda, A., Yamada, K., Tamano, H., Fuke, S., Kawamura, M., Oku, N., Hippocampal calcium dyshomeostasis and long-term potentiation in 2-week zinc deficiency (2008) Neurochem. Int., 52, pp. 241-246; Brewer, G.J., Kanzer, S.H., Zimmerman, E.A., Celmins, D.F., Heckman, S.M., Dick, R., Copper and ceruloplasmin abnormalities in Alzheimer's disease (2010) Am. J. Alzheimer's Dis. Other Dement., 25, pp. 490-497; Schlief, M.L., Gitlin, J.D., Copper homeostasis in the CNS (2006) Mol. Neurobiol., 33, pp. 81-90; Lutsenko, S., Human copper homeostasis: a network of interconnected pathways (2010) Curr. Opin. Chem. Biol., 14, pp. 211-217; Kodama, H., Meguro, Y., Abe, T., Rayner, M.H., Suzuki, K.T., Kobayashi, S., Nishimura, M., Genetic expression of Menkes disease in cultured astrocytes of the macular mouse (1991) J. Inherit. Metab. Dis., 14, pp. 896-901; Tiffany-Castiglioni, E., Hong, S., Qian, Y., Copper handling by astrocytes: Insights into neurodegenerative diseases (2011) Int. J. Dev. Neurosci., 29, pp. 811-818; Telianidis, J., Hung, Y.H., Materia, S., La Fontaine, S., Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis (2013) Front. Aging Neurosci., 5, p. 44; Niciu, M.J., Ma, X.-M., El Meskini, R., Ronnett, G.V., Mains, R.E., Eipper, B.A., Developmental changes in the expression of ATP7A during a critical period in postnatal neurodevelopment (2006) Neuroscience, 139, pp. 947-964; Kaler, S.G., ATP7A-related copper transport diseases—emerging concepts and future trends (2011) Nat. Rev. Neurol., 7, p. 15; D'Ambrosi, N., Rossi, L., Copper at synapse: release, binding and modulation of neurotransmission (2015) Neurochem. Int., 90, pp. 36-45; Barnes, N., Tsivkovskii, R., Tsivkovskaia, N., Lutsenko, S., The copper-transporting ATPases, Menkes and Wilson disease proteins, have distinct roles in adult and developing cerebellum (2005) J. Biol. Chem., 280, pp. 9640-9645; Salès, N., Rodolfo, K., Hässig, R., Faucheux, B., Di Giamberardino, L., Moya, K.L., Cellular prion protein localization in rodent and primate brain (1998) Eur. J. Neurosci., 10, pp. 2464-2471; Hornshaw, M.P., McDermott, J.R., Candy, J.M., Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein (1995) Biochem. Biophys. Res. Commun., 207, pp. 621-629; Hornshaw, M.P., McDermott, J.R., Candy, J.M., Lakey, J.H., Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides (1995) Biochem. Biophys. Res. Commun., 214, pp. 993-999; Brown, D.R., Qin, K., Herms, J.W., Madlung, A., Manson, J., Strome, R., Fraser, P.E., Schulz-Schaeffer, W., The cellular prion protein binds copper in vivo (1997) Nature, 390, p. 684; Brown, D.R., Clive, C., Haswell, S.J., Antioxidant activity related to copper binding of native prion protein (2001) J. Neurochem., 76, pp. 69-76; Millhauser, G.L., Copper and the prion protein: methods, structures, function, and disease (2007) Annu. Rev. Phys. Chem., 58, pp. 299-320; Kretzschmar, H.A., Tings, T., Madlung, A., Giese, A., Herms, J., Function of PrP C as a copper-binding protein at the synapse (2000) Prion Dis., pp. 239-249. , Springer; Vassallo, N., Herms, J., Cellular prion protein function in copper homeostasis and redox signalling at the synapse (2003) J. Neurochem., 86, pp. 538-544; You, H., Tsutsui, S., Hameed, S., Kannanayakal, T.J., Chen, L., Xia, P., Engbers, J.D.T., Zamponi, G.W., Aβ neurotoxicity depends on interactions between copper ions, prion protein, and N-methyl-D-aspartate receptors (2012) Proc. Natl. Acad. Sci. U.S.A., 109, pp. 1737-1742; Kessels, H.W., Nguyen, L.N., Nabavi, S., Malinow, R., The prion protein as a receptor for amyloid-β (2010) Nature, 466, p. E3; Stöckel, J., Safar, J., Wallace, A.C., Cohen, F.E., Prusiner, S.B., Prion protein selectively binds copper(II) ions (1998) Biochemistry, 37, pp. 7185-7193; Viles, J.H., Cohen, F.E., Prusiner, S.B., Goodin, D.B., Wright, P.E., Dyson, H.J., Copper binding to the prion protein: structural implications of four identical cooperative binding sites (1999) Proc. Natl. Acad. Sci. U.S.A., 96, pp. 2042-2047; Prusiner, S.B., Novel proteinaceous infectious particles cause scrapie (1982) Science, 216, pp. 136-144; Hartter, D.E., Barnea, A., Evidence for release of copper in the brain: depolarization-induced release of newly taken-up 67copper (1988) Synapse, 2, pp. 412-415; Hopt, A., Korte, S., Fink, H., Panne, U., Niessner, R., Jahn, R., Kretzschmar, H., Herms, J., Methods for studying synaptosomal copper release (2003) J. Neurosci. Methods, 128, pp. 159-172; Brown, D.R., Prion and prejudice: normal protein and the synapse (2001) Trends Neurosci., 24, pp. 85-90; Gasperini, L., Meneghetti, E., Pastore, B., Benetti, F., Legname, G., Prion protein and copper cooperatively protect neurons by modulating NMDA receptor through S-nitrosylation (2015) Antioxid. Redox Signal., 22, pp. 772-784; Pauly, P.C., Harris, D.A., Copper stimulates endocytosis of the prion protein (1998) J. Biol. Chem., 273, pp. 33107-33110; Balamurugan, K., Schaffner, W., Copper homeostasis in eukaryotes: teetering on a tightrope (2006) Biochim. Biophys. Acta – Mol. Cell Res., 1763, pp. 737-746; Rae, T.D., Schmidt, P.J., Pufahl, R.A., Culotta, V.C., O'halloran, T.V., Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase (1999) Science, 284, pp. 805-808; Huang, X., Cuajungco, M.P., Atwood, C.S., Hartshorn, M.A., Tyndall, J.D.A., Hanson, G.R., Stokes, K.C., Bush, A.I., Cu(II) Potentiation of alzheimer Aβ neurotoxicity: correlation with cell-free hydrogen peroxide production and metal reduction (1999) J. Biol. Chem., 274, pp. 37111-37116. , http://www.jbc.org/content/274/52/37111.abstract; Multhaup, G., Ruppert, T., Schlicksupp, A., Hesse, L., Bill, E., Pipkorn, R., Masters, C.L., Beyreuther, K., Copper-binding amyloid precursor protein undergoes a site-specific fragmentation in the reduction of hydrogen peroxide (1998) Biochemistry, 37, pp. 7224-7230; Xiao, Z., Loughlin, F., George, G.N., Howlett, G.J., Wedd, A.G., C-terminal domain of the membrane copper transporter Ctr1 from Saccharomyces cerevisiae binds four Cu (I) ions as a cuprous-thiolate polynuclear cluster: sub-femtomolar Cu (I) affinity of three proteins involved in copper trafficking (2004) J. Am. Chem. Soc., 126, pp. 3081-3090; Terwel, D., Löschmann, Y., Schmidt, H.H., Schöler, H.R., Cantz, T., Heneka, M.T., Neuroinflammatory and behavioural changes in the Atp7B mutant mouse model of Wilson's disease (2011) J. Neurochem., 118, pp. 105-112; Schmidt, K., Ralle, M., Schaffer, T., Jayakanthan, S., Bari, B., Muchenditsi, A., Lutsenko, S., ATP7A and ATP7B copper transporters have distinct functions in the regulation of neuronal dopamine-β-hydroxylase (2018) J. Biol. Chem., 293, pp. 20085-20098; Saito, T., Nagao, T., Okabe, M., Saito, K., Neurochemical and histochemical evidence for an abnormal catecholamine metabolism in the cerebral cortex of the Long-Evans Cinnamon rat before excessive copper accumulation in the brain (1996) Neurosci. Lett., 216, pp. 195-198; Linder, M.C., Ceruloplasmin and other copper binding components of blood plasma and their functions: an update (2016) Metallomics, 8, pp. 887-905; Masuoka, J., Hegenauer, J., Van Dyke, B.R., Saltman, P., Intrinsic stoichiometric equilibrium constants for the binding of zinc (II) and copper (II) to the high affinity site of serum albumin (1993) J. Biol. Chem., 268, pp. 21533-21537; Liu, N., Lo, L.S., Askary, S.H., Jones, L., Kidane, T.Z., Trang, T., Nguyen, M., Linder, M.C., Transcuprein is a macroglobulin regulated by copper and iron availability (2007) J. Nutr. Biochem., 18, pp. 597-608; Kardos, J., Kovács, I., Hajós, F., Kálmán, M., Simonyi, M., Nerve endings from rat brain tissue release copper upon depolarization. A possible role in regulating neuronal excitability (1989) Neurosci. Lett., 103, pp. 139-144; Capo, C.R., Arciello, M., Squitti, R., Cassetta, E., Rossini, P.M., Calabrese, L., Rossi, L., Features of ceruloplasmin in the cerebrospinal fluid of Alzheimer's disease patients (2008) Biometals, 21, pp. 367-372; Stuerenburg, H.J., CSF copper concentrations, blood-brain barrier function, and ceruloplasmin synthesis during the treatment of Wilson's disease (2000) J. Neural Transm., 107, pp. 321-329; Viles, J.H., Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in Alzheimer's, Parkinson's and prion diseases (2012) Coord. Chem. Rev., 256, pp. 2271-2284; Dudzik, C.G., Walter, E.D., Millhauser, G.L., Coordination features and affinity of the Cu2+ site in the α-synuclein protein of Parkinson's disease (2011) Biochemistry, 50, pp. 1771-1777; Irving, H., Williams, R.J.P., The stability of transition-metal complexes (1953) J. Chem. Soc., pp. 3192-3210; Ala, A., Walker, A.P., Ashkan, K., Dooley, J.S., Schilsky, M.L., Wilson's disease (2007) Lancet, 369, pp. 397-408; Squitti, R., Ghidoni, R., Simonelli, I., Ivanova, I.D., Colabufo, N.A., Zuin, M., Benussi, L., Rongioletti, M., Copper dyshomeostasis in Wilson disease and Alzheimer's disease as shown by serum and urine copper indicators (2018) J. Trace Elem. Med Biol., 45, pp. 181-188; Streltsov, V.A., Ekanayake, R.S.K., Drew, S.C., Chantler, C.T., Best, S.P., Structural insight into redox dynamics of copper bound N-truncated amyloid-β pe ptides from in situ X-ray absorption spectroscopy (2018) Inorg. Chem., 57, pp. 11422-11435; Drew, S.C., Masters, C.L., Barnham, K.J., Alzheimer's Abeta peptides with disease-associated N-terminal modifications: influence of isomerisation, truncation and mutation on Cu2+ coordination (2010) PLoS One, 5; Wezynfeld, N.E., Stefaniak, E., Stachucy, K., Drozd, A., Płonka, D., Drew, S.C., Krężel, A., Bal, W., Resistance of Cu(Aβ4–16) to copper capture by metallothionein-3 supports a function for the Aβ4–42 peptide as a synaptic CuII scavenger (2016) Angew. Chem., Int. Ed., 55, pp. 8235-8238; Mital, M., Wezynfeld, N.E., Frączyk, T., Wiloch, M.Z., Wawrzyniak, U.E., Bonna, A., Tumpach, C., Drew, S.C., A functional role for Aβ in metal homeostasis? N-truncation and high-affinity copper binding (2015) Angew. Chem., Int. Ed., 54, pp. 10460-10464; Cassagnes, L.-E., Hervé, V., Nepveu, F., Hureau, C., Faller, P., Collin, F., The catalytically active copper-amyloid-beta state: coordination site responsible for reactive oxygen species production (2013) Angew. Chem., Int. Ed., 52, pp. 11110-11113; Hureau, C., Dorlet, P., Coordination of redox active metal ions to the amyloid precursor protein and to amyloid-β peptides involved in Alzheimer disease. Part 2: Dependence of Cu (II) binding sites with Aβ sequences (2012) Coord. Chem. Rev., 256, pp. 2175-2187; Richens, D.T., Ligand substitution reactions at inorganic centers (2005) Chem. Rev., 105, pp. 1961-2002; Conte-Daban, A., Beyler, M., Tripier, R., Hureau, C., Kinetics are crucial when targeting copper ions to fight Alzheimer's disease: an illustration with azamacrocyclic ligands (2018) Chem. Eur. J., 24, pp. 8447-8452; Somavarapu, A.K., Shen, F., Teilum, K., Zhang, J., Mossin, S., Thulstrup, P.W., Bjerrum, M.J., Hemmingsen, L., The pathogenic A2V mutant exhibits distinct aggregation kinetics, metal site structure, and metal exchange of the Cu2+–Aβ complex (2017) Chem. Eur. J., 23, pp. 13591-13595; Bucossi, S., Ventriglia, M., Panetta, V., Salustri, C., Pasqualetti, P., Mariani, S., Siotto, M., Squitti, R., Copper in Alzheimer's disease: a meta-analysis of serum, plasma, and cerebrospinal fluid studies (2011) J. Alzheimer's Dis., 24, pp. 175-185; Schrag, M., Mueller, C., Oyoyo, U., Smith, M.A., Kirsch, W.M., Iron zinc and copper in the Alzheimer's disease brain: a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion (2011) Prog. Neurobiol., 94, pp. 296-306; Squitti, R., Simonelli, I., Ventriglia, M., Siotto, M., Pasqualetti, P., Rembach, A., Doecke, J., Bush, A.I., Meta-analysis of serum non-ceruloplasmin copper in Alzheimer's disease (2014) J. Alzheimer's Dis., 38, pp. 809-822; Wang, J., Tan, L., Wang, H.-F., Tan, C.-C., Meng, X.-F., Wang, C., Tang, S.-W., Yu, J.-T., Anti-inflammatory drugs and risk of Alzheimer's disease: an updated systematic review and meta-analysis (2015) J. Alzheimer's Dis., 44, pp. 385-396; Li, D.-D., Zhang, W., Wang, Z.-Y., Zhao, P., Serum copper, zinc, and iron levels in patients with Alzheimer's disease: a meta-analysis of case-control studies (2017) Front. Aging Neurosci., 9, p. 300; Squitti, R., Ghidoni, R., Siotto, M., Ventriglia, M., Benussi, L., Paterlini, A., Magri, M., Caprara, D., Value of serum nonceruloplasmin copper for prediction of mild cognitive impairment conversion to Alzheimer disease (2014) Ann. Neurol., 75, pp. 574-580; Schrag, M., Mueller, C., Zabel, M., Crofton, A., Kirsch, W.M., Ghribi, O., Squitti, R., Perry, G., Oxidative stress in blood in Alzheimer's disease and mild cognitive impairment: a meta-analysis (2013) Neurobiol. Dis., 59, pp. 100-110; James, S.A., Volitakis, I., Adlard, P.A., Duce, J.A., Masters, C.L., Cherny, R.A., Bush, A.I., Elevated labile Cu is associated with oxidative pathology in Alzheimer disease (2012) Free Radical Biol. Med., 52, pp. 298-302; Rembach, A., Hare, D.J., Lind, M., Fowler, C.J., Cherny, R.A., McLean, C., Bush, A.I., Roberts, B.R., Decreased copper in Alzheimer's disease brain is predominantly in the soluble extractable fraction (2013) Int. J. Alzheimer's Dis., 2013; Xu, J., Church, S.J., Patassini, S., Begley, P., Waldvogel, H.J., Curtis, M.A., Faull, R.L.M., Cooper, G.J.S., Evidence for widespread, severe brain copper deficiency in Alzheimer's dementia (2017) Metallomics, 9, pp. 1106-1119; Siotto, M., Simonelli, I., Pasqualetti, P., Mariani, S., Caprara, D., Bucossi, S., Ventriglia, M., Rongioletti, M., Association between serum ceruloplasmin specific activity and risk of Alzheimer's disease (2016) J. Alzheimer's Dis., 50, pp. 1181-1189; Torsdottir, G., Kristinsson, J., Snaedal, J., Jóhannesson, T., Ceruloplasmin and iron proteins in the serum of patients with Alzheimer's disease (2011) Dement. Geriatr. Cogn. Dis. Extra, 1, pp. 366-371; Squitti, R., Siotto, M., Cassetta, E., El Idrissi, I.G., Colabufo, N.A., Measurements of serum non-ceruloplasmin copper by a direct fluorescent method specific to Cu (II) (2017) Clin. Chem. Lab. Med., 55, pp. 1360-1367; Snaedal, J., Kristinsson, J., Gunnarsdottir, S., Olafsdottir, A., Baldvinsson, M., Johannesson, T., Copper, ceruloplasmin and superoxide dismutase in patients with Alzheimer's disease (1998) Dement. Geriatr. Cogn. Disord., 9, pp. 239-242; Nakamura, K., Go, N., Function and molecular evolution of multicopper blue proteins (2005) Cell. Mol. Life Sci., 62, pp. 2050-2066; Waggoner, D.J., Bartnikas, T.B., Gitlin, J.D., The role of copper in neurodegenerative disease (1999) Neurobiol. Dis., 6, pp. 221-230; Patel, B.N., David, S., A novel glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes (1997) J. Biol. Chem., 272, pp. 20185-20190; Roeser, H.P., Lee, G.R., Nacht, S., Cartwright, G.E., The role of ceruloplasmin in iron metabolism (1970) J. Clin. Invest., 49, pp. 2408-2417; Bielli, P., Calabrese, L., Structure to function relationships in ceruloplasmin: a'moonlighting'protein (2002) Cell. Mol. Life Sci. C., 59, pp. 1413-1427; Squitti, R., Quattrocchi, C.C., Forno, G.D., Antuono, P., Wekstein, D.R., Capo, C.R., Salustri, C., Rossini, P.M., Ceruloplasmin (2-D PAGE) pattern and copper content in serum and brain of Alzheimer disease patients (2006) Biomark. Insights, 1. , 1177271906001000; Mercer, S.W., Wang, J., Burke, R., In vivo modeling of the pathogenic effect of copper transporter mutations that cause Menkes and Wilson diseases, motor neuropathy, and susceptibility to Alzheimer's disease (2017) J. Biol. Chem., 292, pp. 4113-4122; Squitti, R., Pasqualetti, P., Dal Forno, G., Moffa, F., Cassetta, E., Lupoi, D., Vernieri, F., Rossini, P.M., Excess of serum copper not related to ceruloplasmin in Alzheimer disease (2005) Neurology, 64, pp. 1040-1046; Squitti, R., Pasqualetti, P., Polimanti, R., Salustri, C., Moffa, F., Cassetta, E., Lupoi, D., Siotto, M., Metal-score as a potential non-invasive diagnostic test for Alzheimer's disease (2013) Curr. Alzheimer Res., 10, pp. 191-198; Squitti, R., Bressi, F., Pasqualetti, P., Bonomini, C., Ghidoni, R., Binetti, G., Cassetta, E., Vernieri, F., Longitudinal prognostic value of serum “free” copper in patients with Alzheimer disease (2009) Neurology, 72, pp. 50-55; Squitti, R., Ghidoni, R., Scrascia, F., Benussi, L., Panetta, V., Pasqualetti, P., Moffa, F., Binetti, G., Free copper distinguishes mild cognitive impairment subjects from healthy elderly individuals (2011) J. Alzheimer's Dis., 23, pp. 239-248; Rozzini, L., Lanfranchi, F., Pilotto, A., Catalani, S., Gilberti, M.E., Paganelli, M., Apostoli, P., Padovani, A., Serum non-ceruloplasmin non-albumin copper elevation in mild cognitive impairment and dementia due to Alzheimer's disease: a case control study (2018) J. Alzheimer's Dis., 61, pp. 907-912; Shen, X.-L., Yu, J.-H., Zhang, D.-F., Xie, J.-X., Jiang, H., Positive relationship between mortality from Alzheimer's disease and soil metal concentration in mainland China (2014) J. Alzheimers Dis., 42, pp. 893-900; Morris, M.C., Evans, D.A., Tangney, C.C., Bienias, J.L., Schneider, J.A., Wilson, R.S., Scherr, P.A., Dietary copper and high saturated and trans fat intakes associated with cognitive decline (2006) Arch. Neurol., 63, pp. 1085-1088; Lam, P.K., Kritz-Silverstein, D., Barrett-Connor, E., Milne, D., Nielsen, F., Gamst, A., Morton, D., Wingard, D., Plasma trace elements and cognitive function in older men and women: the Rancho Bernardo study (2008) J. Nutr. Heal. Aging, 12, pp. 22-27; Zhou, G., Ji, X., Cui, N., Cao, S., Liu, C., Liu, J., Association between serum copper status and working memory in schoolchildren (2015) Nutrients, 7, pp. 7185-7196; Kicinski, M., Vrijens, J., Vermier, G., Den Hond, E., Schoeters, G., Nelen, V., Bruckers, L., Van Larebeke, N., Neurobehavioral function and low-level metal exposure in adolescents (2015) Int. J. Hyg. Environ. Health, 218, pp. 139-146; Takeuchi, H., Taki, Y., Nouchi, R., Yokoyama, R., Kotozaki, Y., Nakagawa, S., Sekiguchi, A., Hanawa, S., Association of copper levels in the hair with gray matter volume, mean diffusivity, and cognitive functions (2019) Brain Struct. Funct., pp. 1-15; Salustri, C., Barbati, G., Ghidoni, R., Quintiliani, L., Ciappina, S., Binetti, G., Squitti, R., Is cognitive function linked to serum free copper levels? A cohort study in a normal population (2010) Clin. Neurophysiol., 121, pp. 502-507; Sensi, S.L., Granzotto, A., Siotto, M., Squitti, R., Copper and zinc dysregulation in Alzheimer's disease (2018) Trends Pharmacol. Sci., 39, pp. 1049-1063; Squitti, R., Simonelli, I., Cassetta, E., Lupoi, D., Rongioletti, M., Ventriglia, M., Siotto, M., Patients with increased non-ceruloplasmin copper appear a distinct sub-group of Alzheimer's disease: a neuroimaging study (2017) Curr. Alzheimer Res., 14, pp. 1318-1326; Squitti, R., Ventriglia, M., Siotto, M., Salustri, C., Copper in Alzheimer's disease (2017) Biometals Neurodegener. Dis., pp. 19-34. , Elsevier; Squitti, R., Ventriglia, M., Gennarelli, M., Colabufo, N.A., El Idrissi, I.G., Bucossi, S., Mariani, S., Congiu, C., Non-ceruloplasmin copper distincts subtypes in Alzheimer's disease: a genetic study of ATP7B frequency (2017) Mol. Neurobiol., 54, pp. 671-681; Singh, I., Sagare, A.P., Coma, M., Perlmutter, D., Gelein, R., Bell, R.D., Deane, R.J., Deane, R., Low levels of copper disrupt brain amyloid-beta homeostasis by altering its production and clearance (2013) Proc. Natl. Acad. Sci. U.S.A., 110, pp. 14771-14776; Hartmann, T., Kuchenbecker, J., Grimm, M.O.W., Alzheimer's disease: the lipid connection (2007) J. Neurochem., 103, pp. 159-170; Refolo, L.M., Pappolla, M.A., LaFrancois, J., Malester, B., Schmidt, S.D., Thomas-Bryant, T., Tint, G.S., Petanceska, S.S., A cholesterol-lowering drug reduces β-amyloid pathology in a transgenic mouse model of Alzheimer's disease (2001) Neurobiol. Dis., 8, pp. 890-899; Sparks, D.L., Scheff, S.W., Hunsaker, J.C., III, Liu, H., Landers, T., Gross, D.R., Induction of Alzheimer-like β-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol (1994) Exp. Neurol., 126, pp. 88-94; Refolo, L.M., Pappolla, M.A., Malester, B., LaFrancois, J., Bryant-Thomas, T., Wang, R., Tint, G.S., Duff, K., Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model (2000) Neurobiol. Dis., 7, pp. 321-331; Sparks, D.L., Lochhead, J., Horstman, D., Wagoner, T., Martin, T., Water quality has a pronounced effect on cholesterol-induced accumulation of Alzheimer amyloid β (Aβ) in rabbit brain (2002) J. Alzheimer's Dis., 4, pp. 523-529; Sparks, D.L., Schreurs, B.G., Trace amounts of copper in water induce beta-amyloid plaques and learning deficits in a rabbit model of Alzheimer's disease (2003) Proc. Natl. Acad. Sci. U.S.A., 100, pp. 11065-11069; Sparks, D.L., Friedland, R., Petanceska, S., Schreurs, B.G., Shi, J., Perry, G., Smith, M.A., Stankovic, G., Trace copper levels in the drinking water, but not zinc or aluminum influence CNS Alzheimer-like pathology (2006) J. Nutr. Heal. Aging, 10, pp. 247-254; Huang, X., Atwood, C.S., Moir, R.D., Hartshorn, M.A., Tanzi, R.E., Bush, A.I., Trace metal contamination initiates the apparent auto-aggregation, amyloidosis, and oligomerization of Alzheimer's Aβ peptides (2004) J. Biol. Inorg. Chem., 9, pp. 954-960; Hidalgo, J., Carrasco, J., Quintana, A., Molinero, A., Florit, S., Giralt, M., Ortega-Aznar, A., Metallothionein I, II and III in Alzheimer disease and animal models of neuroinflammation (2006) Exp. Biol. Med., pp. 1450-1458; Zambenedetti, P., Giordano, R., Zatta, P., Metallothioneins are highly expressed in astrocytes and microcapillaries in Alzheimer's disease (1998) J. Chem. Neuroanat., 15, pp. 21-26; Ruttkay-Nedecky, B., Nejdl, L., Gumulec, J., Zitka, O., Masarik, M., Eckschlager, T., Stiborova, M., Kizek, R., The role of metallothionein in oxidative stress (2013) Int. J. Mol. Sci., 14, pp. 6044-6066; Vašák, M., Meloni, G., Chemistry and biology of mammalian metallothioneins (2011) J. Biol. Inorg. Chem., 16, p. 1067; Meloni, G., Faller, P., Vašák, M., Redox silencing of copper in metal-linked neurodegenerative disorders: reaction of Zn7metallothionein-3 with Cu2+ ions (2007) J. Biol. Chem., 282, pp. 16068-16078; Vašák, M., Meloni, G., Mammalian metallothionein-3: New functional and structural insights (2017) Int. J. Mol. Sci., 18, p. 1117; Yu, W.H., Lukiw, W.J., Bergeron, C., Niznik, H.B., Fraser, P.E., Metallothionein III is reduced in Alzheimer's disease (2001) Brain Res., 894, pp. 37-45; Kim, H.G., Hwang, Y.P., Han, E.H., Choi, C.Y., Yeo, C.Y., Kim, J.Y., Lee, K.Y., Jeong, H.G., Metallothionein-III provides neuronal protection through activation of nuclear factor-κB via the TrkA/phosphatidylinositol-3 kinase/Akt signaling pathway (2009) Toxicol. Sci., 112, pp. 435-449; Meloni, G., Sonois, V., Delaine, T., Guilloreau, L., Gillet, A., Teissié, J., Faller, P., Vašák, M., Metal swap between Zn7-metallothionein-3 and amyloid-β–Cu protects against amyloid-β toxicity (2008) Nat. Chem. Biol., 4, pp. 366-372; Midthune, B., Tyan, S.-H., Walsh, J.J., Sarsoza, F., Eggert, S., Hof, P.R., Dickstein, D.L., Koo, E.H., Deletion of the amyloid precursor-like protein 2 (APLP2) does not affect hippocampal neuron morphology or function (2012) Mol. Cell. Neurosci., 49, pp. 448-455; Heber, S., Herms, J., Gajic, V., Hainfellner, J., Aguzzi, A., Rulicke, T., von Kretzschmar, H., Muller, U., Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precursor protein family members (2000) J. Neurosci., 20, pp. 7951-7963; Korte, M., Herrmann, U., Zhang, X., Draguhn, A., The role of APP and APLP for synaptic transmission, plasticity, and network function: lessons from genetic mouse models (2012) Exp. Brain Res., 217, pp. 435-440; von Koch, C.S., Zheng, H., Chen, H., Trumbauer, M., Thinakaran, G., van der Ploeg, L.H., Price, D.L., Sisodia, S.S., Generation of APLP2 KO mice and early postnatal lethality in APLP2/APP double KO mice (1997) Neurobiol. Aging, 18, pp. 661-669; Zhang, X., Herrmann, U., Weyer, S.W., Both, M., Muller, U.C., Korte, M., Draguhn, A., Hippocampal network oscillations in APP/APLP2-deficient mice (2013) PLoS One, 8; Dawson, G.R., Seabrook, G.R., Zheng, H., Smith, D.W., Graham, S., O'Dowd, G., Bowery, B.J., Sirinathsinghji, D.J., Age-related cognitive deficits, impaired long-term potentiation and reduction in synaptic marker density in mice lacking the beta-amyloid precursor protein (1999) Neuroscience, 90, pp. 1-13; Giuffrida, M.L., Caraci, F., Pignataro, B., Cataldo, S., De Bona, P., Bruno, V., Molinaro, G., Copani, A., β-Amyloid monomers are neuroprotective (2009) J. Neurosci., 29, pp. 10582-10587; Mitteregger, G., Herms, J., Kretzschmar, H.A., Krebs, B., Priller, C., Bauer, T., Synapse formation and function is modulated by the amyloid precursor protein (2006) J. Neurosci., 26, pp. 7212-7221; Weyer, S.W., Klevanski, M., Delekate, A., Voikar, V., Aydin, D., Hick, M., Filippov, M., Muller, U.C., APP and APLP2 are essential at PNS and CNS synapses for transmission, spatial learning and LTP (2011) EMBO J., 30, pp. 2266-2280; Morley, J.E., Farr, S.A., Banks, W.A., Johnson, S.N., Yamada, K.A., Xu, L., A physiological role for amyloid-β protein: enhancement of learning and memory (2010) J. Alzheimer's Dis., 19, pp. 441-449; Zou, K., Gong, J.-S., Yanagisawa, K., Michikawa, M., A novel function of monomeric amyloid β-protein serving as an antioxidant molecule against metal-induced oxidative damage (2002) J. Neurosci., 22, pp. 4833-4841; Pearson, H.A., Peers, C., Physiological roles for amyloid beta peptides (2006) J. Physiol., 575, pp. 5-10; Abramov, E., Dolev, I., Fogel, H., Ciccotosto, G.D., Ruff, E., Slutsky, I., Amyloid-beta as a positive endogenous regulator of release probability at hippocampal synapses (2009) Nat. Neurosci., 12, pp. 1567-1576; Yankner, B.A., Duffy, L.K., Kirschner, D.A., Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides (1990) Science, 250, pp. 279-282; Smith, M.A., Casadesus, G., Joseph, J.A., Perry, G., Amyloid-β and τ serve antioxidant functions in the aging and Alzheimer brain (2002) Free Radical Biol. Med., 33, pp. 1194-1199; Kepp, K.P., Alzheimer's disease due to loss of function: a new synthesis of the available data (2016) Prog. Neurobiol., 143, pp. 36-60; Plant, L.D., Boyle, J.P., Smith, I.F., Peers, C., Pearson, H.A., The production of amyloid beta peptide is a critical requirement for the viability of central neurons (2003) J. Neurosci., 23, pp. 5531-5535; Kaden, D., Munter, L.M., Reif, B., Multhaup, G., The amyloid precursor protein and its homologues: structural and functional aspects of native and pathogenic oligomerization (2012) Eur. J. Cell Biol., 91, pp. 234-239; Hesse, L., Beher, D., Masters, C.L., Multhaup, G., The beta A4 amyloid precursor protein binding to copper (1994) FEBS Lett., 349, pp. 109-116; Dahms, S.O., Hoefgen, S., Roeser, D., Schlott, B., Guhrs, K.-H., Than, M.E., Structure and biochemical analysis of the heparin-induced E1 dimer of the amyloid precursor protein (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 5381-5386; Tõugu, V., Palumaa, P., Coordination of zinc ions to the key proteins of neurodegenerative diseases: Aβ, APP, α-synuclein and PrP (2012) Coord. Chem. Rev., 256, pp. 2219-2224; Kong, G.K.-W., Adams, J.J., Cappai, R., Parker, M.W., Structure of Alzheimer's disease amyloid precursor protein copper-binding domain at atomic resolution (2007) Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun., 63, pp. 819-824; Bush, A.I., Multhaup, G., Moir, R.D., Williamson, T.G., Small, D.H., Rumble, B., Pollwein, P., Masters, C.L., A novel zinc(II) binding site modulates the function of the beta A4 amyloid protein precursor of Alzheimer's disease (1993) J. Biol. Chem., 268, pp. 16109-16112; Mayer, M.C., Kaden, D., Schauenburg, L., Hancock, M.A., Voigt, P., Roeser, D., Barucker, C., Multhaup, G., Novel zinc-binding site in the E2 domain regulates amyloid precursor-like protein 1 (APLP1) oligomerization (2014) J. Biol. Chem., 289, pp. 19019-19030; Multhaup, G., Schlicksupp, A., Hesse, L., Beher, D., Ruppert, T., Masters, C.L., Beyreuther, K., The amyloid precursor protein of Alzheimer's disease in the reduction of copper(II) to copper(I) (1996) Science, 271, pp. 1406-1409; Ooi, C.E., Rabinovich, E., Dancis, A., Bonifacino, J.S., Klausner, R.D., Copper-dependent degradation of the Saccharomyces cerevisiae plasma membrane copper transporter Ctr1p in the apparent absence of endocytosis (1996) EMBO J., 15, pp. 3515-3523; White, A.R., Reyes, R., Mercer, J.F.B., Camakaris, J., Zheng, H., Bush, A.I., Multhaup, G., Cappai, R., Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout mice (1999) Brain Res., 842, pp. 439-444; Squitti, R., Barbati, G., Rossi, L., Ventriglia, M., Dal Forno, G., Cesaretti, S., Moffa, F., Pasqualetti, P., Excess of nonceruloplasmin serum copper in AD correlates with MMSE, CSF β-amyloid, and h-tau (2006) Neurology, 67, pp. 76-82; Strozyk, D., Launer, L.J., Adlard, P.A., Cherny, R.A., Tsatsanis, A., Volitakis, I., Blennow, K., Bush, A.I., Zinc and copper modulate Alzheimer Aβ levels in human cerebrospinal fluid (2009) Neurobiol. Aging, 30, pp. 1069-1077; White, A.R., Multhaup, G., Maher, F., Bellingham, S., Camakaris, J., Zheng, H., Bush, A.I., Cappai, R., The Alzheimer's disease amyloid precursor protein modulates copper-induced toxicity and oxidative stress in primary neuronal cultures (1999) J. Neurosci., 19, pp. 9170-9179. , http://www.jneurosci.org/content/19/21/9170.short; Suazo, M., Hodar, C., Morgan, C., Cerpa, W., Cambiazo, V., Inestrosa, N.C., Gonzalez, M., Overexpression of amyloid precursor protein increases copper content in HEK293 cells (2009) Biochem. Biophys. Res. Commun., 382, pp. 740-744; Maynard, C.J., Cappai, R., Volitakis, I., Cherny, R.A., White, A.R., Beyreuther, K., Masters, C.L., Li, Q.-X., Overexpression of Alzheimer's disease amyloid-beta opposes the age-dependent elevations of brain copper and iron (2002) J. Biol. Chem., 277, pp. 44670-44676; Treiber, C., Simons, A., Strauss, M., Hafner, M., Cappai, R., Bayer, T.A., Multhaup, G., Clioquinol mediates copper uptake and counteracts copper efflux activities of the amyloid precursor protein of Alzheimer's disease (2004) J. Biol. Chem., 279, pp. 51958-51964; Cerpa, W.F., Barria, M.I., Chacon, M.A., Suazo, M., Gonzalez, M., Opazo, C., Bush, A.I., Inestrosa, N.C., The N-terminal copper-binding domain of the amyloid precursor protein protects against Cu2+ neurotoxicity in vivo (2004) FASEB J., 18, pp. 1701-1703; Lang, M., Fan, Q., Wang, L., Zheng, Y., Xiao, G., Wang, X., Wang, W., Zhou, B., Inhibition of human high-affinity copper importer Ctr1 orthologous in the nervous system of Drosophila ameliorates Abeta42-induced Alzheimer's disease-like symptoms (2013) Neurobiol. Aging, 34, pp. 2604-2612; Buxbaum, J.D., Ruefli, A.A., Parker, C.A., Cypess, A.M., Greengard, P., Calcium regulates processing of the Alzheimer amyloid protein precursor in a protein kinase C-independent manner (1994) Proc. Natl. Acad. Sci. U.S.A., 91, pp. 4489-4493; Mattson, M.P., Cheng, B., Culwell, A.R., Esch, F.S., Lieberburg, I., Rydel, R.E., Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the beta-amyloid precursor protein (1993) Neuron, 10, pp. 243-254; Kim, H.S., Park, C.H., Cha, S.H., Lee, J.H., Lee, S., Kim, Y., Rah, J.C., Suh, Y.H., Carboxyl-terminal fragment of Alzheimer's APP destabilizes calcium homeostasis and renders neuronal cells vulnerable to excitotoxicity (2000) FASEB J., 14, pp. 1508-1517; Kanekiyo, T., Liu, C.-C., Shinohara, M., Li, J., Bu, G., LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-beta (2012) J. Neurosci., 32, pp. 16458-16465; Bu, G., Cam, J., Zerbinatti, C., LRP in amyloid-beta production and metabolism (2006) Ann. N. Y. Acad. Sci., 1086, pp. 35-53; Cam, J.A., Zerbinatti, C.V., Knisely, J.M., Hecimovic, S., Li, Y., Bu, G., The low density lipoprotein receptor-related protein 1B retains beta-amyloid precursor protein at the cell surface and reduces amyloid-beta peptide production (2004) J. Biol. Chem., 279, pp. 29639-29646; Bayer, T.A., Schafer, S., Simons, A., Kemmling, A., Kamer, T., Tepest, R., Eckert, A., Multhaup, G., Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Abeta production in APP23 transgenic mice (2003) Proc. Natl. Acad. Sci. U.S.A., 100, pp. 14187-14192; Cater, M.A., McInnes, K.T., Li, Q.-X., Volitakis, I., La Fontaine, S., Mercer, J.F.B., Bush, A.I., Intracellular copper deficiency increases amyloid-β secretion by diverse mechanisms (2008) Biochem. J., 412, pp. 141-152; Faller, P., Hureau, C., La Penna, G., Metal ions and intrinsically disordered proteins and peptides: from Cu/Zn amyloid-beta to general principles (2014) Acc. Chem. Res., 47, pp. 2252-2259; Drew, S.C., Barnham, K.J., The heterogeneous nature of Cu2+ interactions with Alzheimer's amyloid-beta peptide (2011) Acc. Chem. Res., 44, pp. 1146-1155; Alies, B., Eury, H., Bijani, C., Rechignat, L., Faller, P., Hureau, C., pH-dependent Cu(II) coordination to amyloid-β peptide: impact of sequence alterations, including the H6R and D7N familial mutations (2011) Inorg. Chem., 50, pp. 11192-11201; Summers, K.L., Schilling, K.M., Roseman, G., Markham, K.A., Dolgova, N.V., Kroll, T., Sokaras, D., George, G.N., X-ray absorption spectroscopy investigations of copper (II) coordination in the human amyloid β peptide (2019) Inorg. Chem.; Tõugu, V., Karafin, A., Palumaa, P., Binding of zinc(II) and copper(II) to the full-length Alzheimer's amyloid-β peptide (2008) J. Neurochem., 104, pp. 1249-1259; Atwood, C.S., Scarpa, R.C., Huang, X., Moir, R.D., Jones, W.D., Fairlie, D.P., Tanzi, R.E., Bush, A.I., Characterization of copper interactions with alzheimer amyloid beta peptides: identification of an attomolar-affinity copper binding site on amyloid beta1-42 (2000) J. Neurochem., 75, pp. 1219-1233; Sarell, C.J., Syme, C.D., Rigby, S.E.J., Viles, J.H., Copper(II) binding to amyloid-beta fibrils of Alzheimer's disease reveals a picomolar affinity: stoichiometry and coordination geometry are independent of Abeta oligomeric form (2009) Biochemistry, 48, pp. 4388-4402; Hatcher, L.Q., Hong, L., Bush, W.D., Carducci, T., Simon, J.D., Quantification of the binding constant of copper(II) to the amyloid-beta peptide (2008) J. Phys. Chem. B, 112, pp. 8160-8164; Zawisza, I., Rózga, M., Bal, W., Affinity of copper and zinc ions to proteins and peptides related to neurodegenerative conditions (Aβ, APP, α-synuclein, PrP) (2012) Coord. Chem. Rev., 256, pp. 2297-2307; Arena, G., Pappalardo, G., Sovago, I., Rizzarelli, E., Copper(II) interaction with amyloid-β: affinity and speciation (2012) Coord. Chem. Rev., 256, pp. 3-12; Tõugu, V., Karafin, A., Zovo, K., Chung, R.S., Howells, C., West, A.K., Palumaa, P., Zn(II)- and Cu(II)-induced non-fibrillar aggregates of amyloid-β (1–42) peptide are transformed to amyloid fibrils, both spontaneously and under the influence of metal chelators (2009) J. Neurochem., 110, pp. 1784-1795; Miura, T., Suzuki, K., Kohata, N., Takeuchi, H., Metal binding modes of Alzheimer's amyloid beta-peptide in insoluble aggregates and soluble complexes (2000) Biochemistry, 39, pp. 7024-7031; Drago, D., Bolognin, S., Zatta, P., Role of metal ions in the Aβ oligomerization in Alzheimer's disease and in other neurological disorders (2008) Curr. Alzheimer Res., 5, pp. 500-507; Sharma, A.K., Pavlova, S.T., Kim, J., Kim, J., Mirica, L.M., The effect of Cu(2+) and Zn(2+) on the Aβ42 peptide aggregation and cellular toxicity (2013) Metallomics, 5, pp. 1529-1536; Leal, S.S., Botelho, H.M., Gomes, C.M., Metal ions as modulators of protein conformation and misfolding in neurodegeneration (2012) Coord. Chem. Rev., 256, pp. 2253-2270; Ono, K., Condron, M.M., Teplow, D.B., Structure-neurotoxicity relationships of amyloid beta-protein oligomers (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 14745-14750; Kourie, J.I., Henry, C.L., Farrelly, P., Diversity of amyloid beta protein fragment [1-40]-formed channels (2001) Cell. Mol. Neurobiol., 21, pp. 255-284; Ramsden, M., Henderson, Z., Pearson, H.A., Modulation of Ca2+ channel currents in primary cultures of rat cortical neurones by amyloid beta protein (1–40) is dependent on solubility status (2002) Brain Res., 956, pp. 254-261; Bhatia, R., Lin, H., Lal, R., Fresh and globular amyloid beta protein (1–42) induces rapid cellular degeneration: evidence for AbetaP channel-mediated cellular toxicity (2000) FASEB J., 14, pp. 1233-1243; Lin, H., Bhatia, R., Lal, R., Amyloid beta protein forms ion channels: implications for Alzheimer's disease pathophysiology (2001) FASEB J., 15, pp. 2433-2444; Demuro, A., Mina, E., Kayed, R., Milton, S.C., Parker, I., Glabe, C.G., Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers (2005) J. Biol. Chem., 280, pp. 17294-17300; Minicozzi, V., Stellato, F., Comai, M., Serra, M.D., Potrich, C., Meyer-Klaucke, W., Morante, S., Identifying the Minimal Copper- and Zinc-binding Site Sequence in Amyloid-β Peptides (2008) J. Biol. Chem., 283, pp. 10784-10792. , http://www.jbc.org/content/283/16/10784.abstract; Tiwari, M.K., Kepp, K.P., Pathogenic properties of Alzheimer's β-amyloid identified from structure-property patient-phenotype correlations (2015) Dalton Trans., 44, pp. 2747-2754; Qiang, W., Yau, W.-M., Luo, Y., Mattson, M.P., Tycko, R., Antiparallel beta-sheet architecture in Iowa-mutant beta-amyloid fibrils (2012) Proc. Natl. Acad. Sci. U.S.A., 109, pp. 4443-4448; Lomakin, A., Teplow, D.B., Kirschner, D.A., Benedek, G.B., Kinetic theory of fibrillogenesis of amyloid beta-protein (1997) Proc. Natl. Acad. Sci. U.S.A., 94, pp. 7942-7947; Seubert, P., Vigo-Pelfrey, C., Esch, F., Lee, M., Dovey, H., Davis, D., Sinha, S., Swindlehurst, C., Isolation and quantification of soluble Alzheimer's beta-peptide from biological fluids (1992) Nature, 359, pp. 325-327; Galasko, D., Chang, L., Motter, R., Clark, C.M., Kaye, J., Knopman, D., Thomas, R., Seubert, P., High cerebrospinal fluid tau and low amyloid beta42 levels in the clinical diagnosis of Alzheimer disease and relation to apolipoprotein E genotype (1998) Arch. Neurol., 55, pp. 937-945; Sinha, S., Anderson, J.P., Barbour, R., Basi, G.S., Caccavello, R., Davis, D., Doan, M., John, V., Purification and cloning of amyloid precursor protein [beta]-secretase from human brain (1999) Nature, 402, pp. 537-540; Munter, L.M., Sieg, H., Bethge, T., Liebsch, F., Bierkandt, F.S., Schleeger, M., Bittner, H.J., Multhaup, G., Model peptides uncover the role of the beta-secretase transmembrane sequence in metal ion mediated oligomerization (2013) J. Am. Chem. Soc., 135, pp. 19354-19361; Dingwall, C., A copper-binding site in the cytoplasmic domain of BACE1 identifies a possible link to metal homoeostasis and oxidative stress in Alzheimer's disease (2007) Biochem. Soc. Trans., 35, pp. 571-573; Angeletti, B., Waldron, K.J., Freeman, K.B., Bawagan, H., Hussain, I., Miller, C.C.J., Lau, K.-F., Dingwall, C., BACE1 cytoplasmic domain interacts with the copper chaperone for superoxide dismutase-1 and binds copper (2005) J. Biol. Chem., 280, pp. 17930-17937; Hou, P., Liu, G., Zhao, Y., Shi, Z., Zheng, Q., Bu, G., Xu, H., Zhang, Y., Role of copper and the copper-related protein CUTA in mediating APP processing and Aβ generation (2015) Neurobiol. Aging, 36, pp. 1310-1315; Liebsch, F., Aurousseau, M.R.P., Bethge, T., McGuire, H., Scolari, S., Herrmann, A., Blunck, R., Multhaup, G., Full-length cellular β-secretase has a trimeric subunit stoichiometry, and its sulfur-rich transmembrane interaction site modulates cytosolic copper compartmentalization (2017) J. Biol. Chem., 292, pp. 13258-13270; Cherny, R.A., Atwood, C.S., Xilinas, M.E., Gray, D.N., Jones, W.D., McLean, C.A., Barnham, K.J., Bush, A.I., Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer's disease transgenic mice (2001) Neuron, 30, pp. 665-676; Huang, M., Xie, S.-S., Jiang, N., Lan, J.-S., Kong, L.-Y., Wang, X.-B., Multifunctional coumarin derivatives: Monoamine oxidase B (MAO-B) inhibition, anti-β-amyloid (Aβ) aggregation and metal chelation properties against Alzheimer's disease (2015) Bioorg. Med. Chem. Lett., 25, pp. 508-513; Huang, L., Lu, C., Sun, Y., Mao, F., Luo, Z., Su, T., Jiang, H., Li, X., Multitarget-directed benzylideneindanone derivatives: anti-β-amyloid (Aβ) aggregation, antioxidant, metal chelation, and monoamine oxidase B (MAO-B) inhibition properties against alzheimer's disease (2012) J. Med. Chem., 55, pp. 8483-8492; DeToma, A.S., Choi, J.-S., Braymer, J.J., Lim, M.H., Myricetin: a naturally occurring regulator of metal-induced amyloid-β aggregation and neurotoxicity (2011) ChemBioChem, 12, pp. 1198-1201; Lee, J.-Y., Friedman, J.E., Angel, I., Kozak, A., Koh, J.-Y., The lipophilic metal chelator DP-109 reduces amyloid pathology in brains of human beta-amyloid precursor protein transgenic mice (2004) Neurobiol. Aging, 25, pp. 1315-1321; Venti, A., Giordano, T., Eder, P., Bush, A.I., Lahiri, D.K., Greig, N.H., Rogers, J.T., The integrated role of desferrioxamine and phenserine targeted to an iron-responsive element in the APP-mRNA 5’-untranslated region (2004) Ann. N. Y. Acad. Sci., 1035, pp. 34-48; Ho, M., Hoke, D.E., Chua, Y.J., Li, Q.-X., Culvenor, J.G., Masters, C., White, A.R., Evin, G., Effect of metal chelators on gamma-secretase indicates that calcium and magnesium ions facilitate cleavage of Alzheimer amyloid precursor Substrate (2010) Int. J. Alzheimers Dis., 950932; Wu, W., Lei, P., Liu, Q., Hu, J., Gunn, A.P., Chen, M., Rui, Y., Li, Y., Sequestration of copper from beta-amyloid promotes selective lysis by cyclen-hybrid cleavage agents (2008) J. Biol. Chem., 283, pp. 31657-31664; Perrone, L., Mothes, E., Vignes, M., Mockel, A., Figueroa, C., Miquel, M.-C., Maddelein, M.-L., Faller, P., Copper transfer from Cu-Aβ to human serum albumin inhibits aggregation, radical production and reduces Aβ toxicity (2010) ChemBioChem, 11, pp. 110-118; Singh, S.K., Sinha, P., Mishra, L., Srikrishna, S., Neuroprotective role of a novel copper chelator against abeta 42 induced neurotoxicity (2013) Int. J. Alzheimers Dis., 2013; Ceccom, J., Cosledan, F., Halley, H., Frances, B., Lassalle, J.M., Meunier, B., Copper chelator induced efficient episodic memory recovery in a non-transgenic Alzheimer's mouse model (2012) PLoS One, 7; Miller, Y., Ma, B., Nussinov, R., Metal binding sites in amyloid oligomers: complexes and mechanisms (2012) Coord. Chem. Rev., 256, pp. 2245-2252; Rana, M., Sharma, A.K., Cu and Zn interactions with Aβ peptides: consequence of coordination on aggregation and formation of neurotoxic soluble Aβ oligomers (2019) Metallomics, 11, pp. 64-84; Smith, D.G., Cappai, R., Barnham, K.J., The redox chemistry of the Alzheimer's disease amyloid β peptide (2007) Biochim. Biophys. Acta Biomembr., 1768, pp. 1976-1990; Pham, A.N., Xing, G., Miller, C.J., Waite, T.D., Fenton-like copper redox chemistry revisited: hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production (2013) J. Catal., 301, pp. 54-64; Lacor, P.N., Buniel, M.C., Chang, L., Fernandez, S.J., Gong, Y., Viola, K.L., Lambert, M.P., Klein, W.L., Synaptic targeting by Alzheimer's-related amyloid beta oligomers (2004) J. Neurosci., 24, pp. 10191-10200; Han, J., Lee, H.J., Kim, K.Y., Lee, S.J.C., Suh, J.-M., Cho, J., Chae, J., Lim, M.H., Tuning structures and properties for developing novel chemical tools toward distinct pathogenic elements in Alzheimer's disease (2018) ACS Chem. Neurosci., 9, pp. 800-808; Savelieff, M.G., DeToma, A.S., Derrick, J.S., Lim, M.H., The ongoing search for small molecules to study metal-associated amyloid-beta species in Alzheimer's disease (2014) Acc. Chem. Res., 47, pp. 2475-2482; Lee, S., Zheng, X., Krishnamoorthy, J., Savelieff, M.G., Park, H.M., Brender, J.R., Kim, J.H., Lim, M.H., Rational design of a structural framework with potential use to develop chemical reagents that target and modulate multiple facets of Alzheimer's disease (2014) J. Am. Chem. Soc., 136, pp. 299-310; Ji, Y., Lee, H.J., Kim, M., Nam, G., Lee, S.J.C., Cho, J., Park, C.-M., Lim, M.H., Strategic design of 2,2′-bipyridine derivatives to modulate metal–amyloid-β aggregation (2017) Inorg. Chem., 56, pp. 6695-6705; Hong, S., Go, Y.K., Derrick, J.S., Han, S., Kim, J., Lim, M.H., Kim, S.H., Advanced electron paramagnetic resonance studies of a ternary complex of copper, amyloid-β, and a chemical regulator (2018) Inorg. Chem., 57, pp. 12665-12670; Mancino, A.M., Hindo, S.S., Kochi, A., Lim, M.H., Effects of clioquinol on metal-triggered amyloid-β aggregation revisited (2009) Inorg. Chem., 48, pp. 9596-9598; Attwell, D., Laughlin, S.B., An energy budget for signaling in the grey matter of the brain (2001) J. Cereb. Blood Flow Metab., 21, pp. 1133-1145; Raichle, M.E., Gusnard, D.A., Appraising the brain's energy budget (2002) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 10237-10239; Zhang, C., Rissman, R.A., Feng, J., Characterization of ATP alternations in an Alzheimer's disease transgenic mouse model (2015) J. Alzheimers Dis., 44, pp. 375-378; Hipkiss, A.R., On the relationship between energy metabolism, proteostasis, aging and Parkinson's disease: possible causative role of methylglyoxal and alleviative potential of carnosine (2017) Aging Dis., 8, pp. 334-345; Yin, F., Boveris, A., Cadenas, E., Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration (2014) Antioxid. Redox Signal., 20, pp. 353-371; Liang, W.S., Reiman, E.M., Valla, J., Dunckley, T., Beach, T.G., Grover, A., Niedzielko, T.L., Stephan, D.A., Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons (2008) Proc. Natl. Acad. Sci. U.S.A., 105, pp. 4441-4446. , http://www.pnas.org/content/105/11/4441.abstract; Kapogiannis, D., Mattson, M.P., Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer's disease (2011) Lancet Neurol., 10, pp. 187-198; Hoyer, S., Brain glucose and energy metabolism abnormalities in sporadic Alzheimer disease. Causes and consequences: an update (2000) Exp. Gerontol., 35, pp. 1363-1372; Swerdlow, R.H., Brain aging, Alzheimer's disease, and mitochondria (1812) Biochim. Biophys. Acta Mol. Basis Dis., 2011, pp. 1630-1639; Carvalho, C., Correia, S.C., Santos, R.X., Cardoso, S., Moreira, P.I., Clark, T.A., Zhu, X., Perry, G., Role of mitochondrial-mediated signaling pathways in Alzheimer disease and hypoxia (2009) J. Bioenerg. Biomembr., 41, pp. 433-440; Martin, L.J., Mitochondrial pathobiology in ALS (2011) J. Bioenerg. Biomembr., 43, pp. 569-579; Kepp, K.P., Dasmeh, P., A model of proteostatic energy cost and its use in analysis of proteome trends and sequence evolution (2014) PLoS One, 9; Kepp, K.P., Genotype-property patient-phenotype relations suggest that proteome exhaustion can cause amyotrophic lateral sclerosis (2015) PLoS One, 10; Walshe, J.M., Waldenström, E., Sams, V., Nordlinder, H., Westermark, K., Abdominal malignancies in patients with Wilson's disease (2003) QJM, 96, pp. 657-662; Akil, M., Brewer, G.J., Psychiatric and behavioral abnormalities in Wilson's disease (1995) Adv. Neurol., 65, pp. 171-178; Carta, M.G., Sorbello, O., Moro, M.F., Bhat, K.M., Demelia, E., Serra, A., Mura, G., Demelia, L., Bipolar disorders and Wilson's disease (2012) BMC Psychiatry, 12, p. 52; Das, S.K., Ray, K., Wilson's disease: an update (2006) Nat. Rev. Neurol., 2, p. 482; Bandmann, O., Weiss, K.H., Kaler, S.G., Wilson's disease and other neurological copper disorders (2015) Lancet Neurol., 14, pp. 103-113; Oder, W., Grimm, G., Kollegger, H., Ferenci, P., Schneider, B., Deecke, L., Neurological and neuropsychiatric spectrum of Wilson's disease: a prospective study of 45 cases (1991) J. Neurol., 238, pp. 281-287; Srinivas, K., Sinha, S., Taly, A.B., Prashanth, L.K., Arunodaya, G.R., Reddy, Y.C.J., Khanna, S., Dominant psychiatric manifestations in Wilson's disease: a diagnostic and therapeutic challenge! (2008) J. Neurol. Sci., 266, pp. 104-108; Zimbrean, P.C., Schilsky, M.L., Psychiatric aspects of Wilson disease: a review (2014) Gen. Hosp. Psychiatry, 36, pp. 53-62; Südmeyer, M., Saleh, A., Wojtecki, L., Cohnen, M., Gross, J., Ploner, M., Hefter, H., Schnitzler, A., Wilson's disease tremor is associated with magnetic resonance imaging lesions in basal ganglia structures (2006) Mov. Disord., 21, pp. 2134-2139; Barthel, H., Hermann, W., Kluge, R., Hesse, S., Collingridge, D.R., Wagner, A., Sabri, O., Concordant pre-and postsynaptic deficits of dopaminergic neurotransmission in neurologic Wilson disease (2003) Am. J. Neuroradiol., 24, pp. 234-238; Hahn, S.H., Lee, S.Y., Jang, Y.-J., Kim, S.N., Shin, H.C., Park, S.Y., Han, H.S., Lee, J.S., Pilot study of mass screening for Wilson's disease in Korea (2002) Mol. Genet. Metab., 76, pp. 133-136; Coffey, A.J., Durkie, M., Hague, S., McLay, K., Emmerson, J., Lo, C., Klaffke, S., Hadzic, N., A genetic study of Wilson's disease in the United Kingdom (2013) Brain, 136, pp. 1476-1487; Bucossi, S., Polimanti, R., Ventriglia, M., Mariani, S., Siotto, M., Ursini, F., Trotta, L., Vernieri, F., Intronic rs2147363 variant in ATP7B transcription factor-binding site associated with Alzheimer's disease (2013) J. Alzheimer's Dis., 37, pp. 453-459; Squitti, R., Siotto, M., Ivanova, I., Rongioletti, M., Kerkar, N., Chapter 42 - ATP7B and Alzheimer Disease (2019), pp. 427-436. , E.A.B.T.-C. T.P. on W.D. Roberts (Eds.), Academic Press; Pujol, J., Fenoll, R., Macià, D., Martínez-Vilavella, G., Alvarez-Pedrerol, M., Rivas, I., Forns, J., Sunyer, J., Airborne copper exposure in school environments associated with poorer motor performance and altered basal ganglia (2016) Brain Behav., 6; Squitti, R., Tecchio, F., Ventriglia, M., The role of copper in human diet and risk of dementia (2015) Curr. Nutr. Rep., 4, pp. 114-125; Ackerman, C.M., Chang, C.J., Copper signaling in the brain and beyond (2018) J. Biol. Chem., 293, pp. 4628-4635; Viola, K.L., Velasco, P.T., Klein, W.L., Why Alzheimer's is a disease of memory: the attack on synapses by A beta oligomers (ADDLs) (2008) J. Nutr. Health Aging, 12, pp. 51S-57S; Alies, B., Renaglia, E., Rózga, M., Bal, W., Faller, P., Hureau, C., Cu (II) affinity for the Alzheimer's peptide: Tyrosine fluorescence studies revisited (2013) Anal. Chem., 85, pp. 1501-1508; Doreulee, N., Yanovsky, Y., Haas, H.L., Suppression of long-term potentiation in hippocampal slices by copper (1997) Hippocampus, 7, pp. 666-669; Goldschmith, A., Infante, C., Leiva, J., Motles, E., Palestini, M., Interference of chronically ingested copper in long-term potentiation (LTP) of rat hippocampus (2005) Brain Res., 1056, pp. 176-182; Leiva, J., Palestini, M., Infante, C., Goldschmidt, A., Motles, E., Copper suppresses hippocampus LTP in the rat, but does not alter learning or memory in the morris water maze (2009) Brain Res., 1256, pp. 69-75; Nishida, Y., The chemical process of oxidative stress by copper(II) and iron(III) ions in several neurodegenerative disorders (2011) Monatsh. Chem. Chem. Mon., 142, pp. 375-384; Multhaup, G., Amyloid precursor protein, copper and Alzheimer's disease (1997) Biomed. Pharmacother., 51, pp. 105-111; Ip, P., Mulligan, V., Chakrabartty, A., ALS-causing SOD1 mutations promote production of copper-deficient misfolded species (2011) J. Mol. Biol., 409, pp. 839-852; Nordlund, A., Leinartaitė, L., Functional features cause misfolding of the ALS-provoking enzyme SOD1 (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 9667-9672. , http://www.pnas.org/content/106/24/9667.short, (accessed June 28, 2014); Perry, J., Shin, D., Getzoff, E., Tainer, J., The structural biochemistry of the superoxide dismutases (2010) Biochim. Biophys. Acta, Mol. Cell. Biol. Lipids, 1804, pp. 245-262; Connor, J.R., Tucker, P., Johnson, M., Snyder, B., Ceruloplasmin levels in the human superior temporal gyrus in aging and Alzheimer's disease (1993) Neurosci. Lett., 159, pp. 88-90; Bush, A.I., The metallobiology of Alzheimer's disease (2003) Trends Neurosci., 26, pp. 207-214; Miyata, S., Nagata, H., Yamao, S., Nakamura, S., Kameyama, M., Dopamine-β-hydroxylase activities in serum and cerebrospinal fluid of aged and demented patients (1984) J. Neurol. Sci., 63, pp. 403-409; Maynard, C.J., Bush, A.I., Masters, C.L., Cappai, R., Li, Q.-X., Metals and amyloid-beta in Alzheimer's disease (2005) Int. J. Exp. Pathol., 86, pp. 147-159; Letelier, M.E., Lepe, A.M., Faúndez, M., Salazar, J., Marín, R., Aracena, P., Speisky, H., Possible mechanisms underlying copper-induced damage in biological membranes leading to cellular toxicity (2005) Chem. Biol. Interact., 151, pp. 71-82; Guilloreau, L., Combalbert, S., Sournia-Saquet, A., Mazarguil, H., Faller, P., Redox chemistry of copper–amyloid-β: the generation of hydroxyl radical in the presence of ascorbate is linked to redox-potentials and aggregation state (2007) ChemBioChem, 8, pp. 1317-1325; Brewer, G.J., Copper toxicity in Alzheimer's disease: cognitive loss from ingestion of inorganic copper (2012) J. Trace Elem. Med. Biol., 26, pp. 89-92; Brewer, G.J., The risks of copper toxicity contributing to cognitive decline in the aging population and to Alzheimer's disease (2009) J. Am. Coll. Nutr., 28, pp. 238-242; Brewer, G.J., Copper-2 hypothesis for causation of the current Alzheimer's disease epidemic together with dietary changes that enhance the epidemic (2017) Chem. Res. Toxicol., 30, pp. 763-768; Saghazadeh, A., Mahmoudi, M., Meysamie, A., Gharedaghi, M., Zamponi, G.W., Rezaei, N., Possible role of trace elements in epilepsy and febrile seizures: a meta-analysis (2015) Nutr. Rev., 73, pp. 760-779; Zhou, F., Wu, F., Zou, S., Chen, Y., Feng, C., Fan, G., Dietary, nutrient patterns and blood essential elements in Chinese children with ADHD (2016) Nutrients, 8, p. 352; Alemany, S., Vilor-Tejedor, N., Bustamante, M., Álvarez-Pedrerol, M., Rivas, I., Forns, J., Querol, X., Sunyer, J., Interaction between airborne copper exposure and ATP7B polymorphisms on inattentiveness in scholar children (2017) Int. J. Hyg. Environ. Health, 220, pp. 51-56
PY - 2019
Y1 - 2019
N2 - In this perspective we list the many clinical, histopathological, genetic and chemical observations relating copper to Alzheimer's disease (AD). We summarize how the coordination chemistry of the APP/Aβ system is centrally involved in neuronal copper transport at the synapses, and that genetic variations in the gene coding for the copper transporter ATP7B cause a subset of AD, which we call CuAD. Importantly, the distinction between loss of function and gain of toxic function breaks down in CuAD, because copper dyshomeostasis features both aspects directly. We argue that CuAD can be described by a single control variable, a critical, location-dependent copper dissociation constant, Kd c. Loss of functional copper from protein-bound pools reduces energy production and oxidative stress control and is characterized by a reduced pool of divalent Cu(II) with Kd < Kd c. Gain of redox-toxic function is described by more copper with Kd > Kd c. In the blood, the critical threshold is estimated to be Kd c ∼10−12 M whereas at synapses it is argued to be Kd c ∼10−9 M. The synaptic threshold is close to the values of Kd for Cu(II)-binding to Aβ, prion protein, APP, and α-synuclein, implied in copper buffering at the synapses during glutamatergic transmission. The empirical support for and biochemical and pathological consequences of CuAD are discussed in detail. © 2019 Elsevier B.V.
AB - In this perspective we list the many clinical, histopathological, genetic and chemical observations relating copper to Alzheimer's disease (AD). We summarize how the coordination chemistry of the APP/Aβ system is centrally involved in neuronal copper transport at the synapses, and that genetic variations in the gene coding for the copper transporter ATP7B cause a subset of AD, which we call CuAD. Importantly, the distinction between loss of function and gain of toxic function breaks down in CuAD, because copper dyshomeostasis features both aspects directly. We argue that CuAD can be described by a single control variable, a critical, location-dependent copper dissociation constant, Kd c. Loss of functional copper from protein-bound pools reduces energy production and oxidative stress control and is characterized by a reduced pool of divalent Cu(II) with Kd < Kd c. Gain of redox-toxic function is described by more copper with Kd > Kd c. In the blood, the critical threshold is estimated to be Kd c ∼10−12 M whereas at synapses it is argued to be Kd c ∼10−9 M. The synaptic threshold is close to the values of Kd for Cu(II)-binding to Aβ, prion protein, APP, and α-synuclein, implied in copper buffering at the synapses during glutamatergic transmission. The empirical support for and biochemical and pathological consequences of CuAD are discussed in detail. © 2019 Elsevier B.V.
KW - Alzheimer's disease
KW - ATP7B
KW - Copper
KW - Kd, ceruloplasmin
KW - β-Amyloid
U2 - 10.1016/j.ccr.2019.06.018
DO - 10.1016/j.ccr.2019.06.018
M3 - Article
VL - 397
SP - 168
EP - 187
JO - Coord. Chem. Rev.
JF - Coord. Chem. Rev.
SN - 0010-8545
ER -