Correlation of metabolic information on FDG-PET with tissue expression of immune markers in patients with non-small cell lung cancer (NSCLC) who are candidates for upfront surgery

Research output: Contribution to journalArticle


Purpose: Eliciting antitumor T-cell response by targeting the PD-1/PD-L1 axis with checkpoint inhibitors has emerged as a novel therapeutic strategy in non-small cell lung cancer (NSCLC). The identification of predictors for sensitivity or resistance to these agents is, therefore, needed. Herein, we investigate the correlation of metabolic information on FDG-PET with tissue expression of immune-checkpoints and other markers of tumor-related immunity in resected NSCLC patients. Materials and methods: All patients referred to our institution for upfront surgical resection of NSCLC, who were investigated with FDG-PET prior to surgery, were consecutively included in the study. From January 2010 to May 2014, 55 patients (stage IA-IIIB; M:F = 42:13; mean age 68.9 years) were investigated. Sampled surgical tumor specimens were analyzed by immunohistochemistry (IHC) for CD68-TAMs (tumor-associated macrophages), CD8-TILs (tumor infiltrating lymphocytes), PD-1-TILs, and PD-L1 tumor expression. Immunoreactivity was evaluated, and scores were compared with imaging findings. FDG-PET images were analyzed to define semi-quantitative parameters: SUVmax and SUVmean. Metabolic information on FDG-PET was correlated with tissue markers expression and disease-free survival (DFS) considering a median follow-up of 16.2 months. Results: Thirty-six adenocarcinomas (ADC), 18 squamous cell carcinomas (SCC), and one sarcomatoid carcinoma were analyzed. All tumors resulted positive at FDG-PET: median SUVmax 11.3 (range: 2.3–32.5) and SUVmean 6.4 (range: 1.5–13) both resulted significantly higher in SCC compared to other NSCLC histotypes (p = 0.007 and 0.048, respectively). IHC demonstrated a median immunoreactive surface covered by CD68-TAMs of 5.41 % (range: 0.84–14.01 %), CD8-TILs of 2.9 % (range: 0.11–11.92 %), PD-1 of 0.65 % (range: 0.02–5.87 %), and PD-L1 of 0.7 % (range: 0.03–10.29 %). We found a statistically significant correlation between SUVmax and SUVmean with the expression of CD8 TILs (rho = 0.31; p = 0.027) and PD-1 (rho = 0.33; p = 0.017 and rho = 0.36; p = 0.009, respectively). The other tissue markers correlated as follows: CD8 TILs and PD-1 (rho = 0.45; p = 0.001), CD8 TILs and PD-L1 (rho = 0.41; p = 0.003), CD68-TAMs and PD-L1 (rho = 0.30; p = 0.027), PD-1 and PD-L1 (rho = 0.26; p = 0.059). With respect to patients’ outcome, SUVmax, SUVmean, and disease stage showed a statistically significant correlation with DFS (p = 0.002, 0.004, and

Original languageEnglish
Pages (from-to)1-8
Number of pages8
JournalEuropean Journal of Nuclear Medicine and Molecular Imaging
Publication statusAccepted/In press - Jun 1 2016



  • Immunometabolism
  • PD-L1
  • TAMs
  • TILs
  • Tumor-related immunity

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Cite this