Cortical inhibition of laser pain and laser-evoked potentials by non-nociceptive somatosensory input

Elisa Testani, Domenica Le Pera, Claudio Del Percio, Roberto Miliucci, Alfredo Brancucci, Costanza Pazzaglia, Liala De Armas, Claudio Babiloni, Paolo Maria Rossini, Massimiliano Valeriani

Research output: Contribution to journalArticle

Abstract

Although the inhibitory action that tactile stimuli can have on pain is well documented, the precise timing of the interaction between the painful and non-painful stimuli in the central nervous system is unclear. The aim of this study was to investigate this issue by measuring the timing of the amplitude modulation of laser evoked potentials (LEPs) due to conditioning non-painful stimuli. LEPs were recorded from 31 scalp electrodes in 10 healthy subjects after painful stimulation of the right arm (C6-C7 dermatomes). Non-painful electrical stimuli were applied by ring electrodes on the second and third finger of the right hand. Electrical stimuli were delivered at +50, +150, +200 and +250 ms interstimulus intervals (ISIs) after the laser pulses. LEPs obtained without any conditioning stimulation were used as a baseline. As compared to the baseline, non-painful electrical stimulation reduced the amplitude of the vertex N2/P2 LEP component and the laser pain rating when electrical stimuli followed the laser pulses only at +150 and +200 ms ISIs. As at these ISIs the collision between the non-painful and painful input is likely to take place at the cortical level, we can conclude that the late processing of painful (thermal) stimuli is partially inhibited by the processing of non-painful (cutaneous) stimuli within the cerebral cortex. Moreover, our results do not provide evidence that non-painful inputs can inhibit pain at a lower level, including the spinal cord. The timing of the amplitude modulation of laser evoked potentials (LEPs) due to conditioning non-painful stimuli was studied. Non painful stimulation reduced the amplitude of the N2/P2 LEP component and the laser pain rating when the electrical stimuli followed the laser pulses by 150-200 ms. Our results suggest that the collision between the non painful and painful input takes place at cortical level, while there is no evidence that non-painful inputs can inhibit pain at spinal cord level.

Original languageEnglish
Pages (from-to)2407-2414
Number of pages8
JournalEuropean Journal of Neuroscience
Volume42
Issue number7
DOIs
Publication statusPublished - Oct 1 2015

Keywords

  • Cerebral cortex
  • Gating
  • Inhibition
  • Pain
  • Touch

ASJC Scopus subject areas

  • Neuroscience(all)

Fingerprint Dive into the research topics of 'Cortical inhibition of laser pain and laser-evoked potentials by non-nociceptive somatosensory input'. Together they form a unique fingerprint.

  • Cite this