TY - JOUR
T1 - Could the enrichment of a biomaterial with conditioned medium or extracellular vesicles modify bone-remodeling kinetics during a defect healing? Evaluations on rat calvaria with synchrotron-based microtomography
AU - Giuliani, Alessandra
AU - Sena, Gabriela
AU - Tromba, Giuliana
AU - Mazzon, Emanuela
AU - Fontana, Antonella
AU - Diomede, Francesca
AU - Piattelli, Adriano
AU - Trubiani, Oriana
N1 - Publisher Copyright:
© 2020 by the authors.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/4/1
Y1 - 2020/4/1
N2 - Tissue engineering has been shown to offer promising approaches for bone regeneration, mostly based on replacement with biomaterials that provide specific environments and support for bone growth. In this context, we previously showed that mesenchymal stem cells (MSCs) and their derivatives, such as conditioned medium (CM) and extracellular vesicles (EV), when seeded on collagen membranes (COL) or polylactide (PLA) biomaterials, are able to favor bone tissue regeneration, especially evidenced in animal model calvary defects. In the present study, we investigated whether the enrichment of a rat calvary defect site with CM, EVs and polyethylenimine (PEI)-engineered EVs could substantially modify the bone remodeling kinetics during defect healing, as these products were reported to favor bone regeneration. In particular, we focused the study, performed by synchrotron radiation-based high-resolution tomography, on the analysis of the bone mass density distribution. We proved that the enrichment of a defect site with CM, EVs and PEI-EVs substantially modifies, often accelerating, bone remodeling kinetics and the related mineralization process during defect healing. Moreover, different biomaterials (COL or PLA) in combination with stem cells of different origin (namely, human periodontal ligament stem cells-hPDLSCs and human gingival mesenchymal stem cells-hGMSCs) and their own CM, EVs and PEI-EVs products were shown to exhibit different mineralization kinetics.
AB - Tissue engineering has been shown to offer promising approaches for bone regeneration, mostly based on replacement with biomaterials that provide specific environments and support for bone growth. In this context, we previously showed that mesenchymal stem cells (MSCs) and their derivatives, such as conditioned medium (CM) and extracellular vesicles (EV), when seeded on collagen membranes (COL) or polylactide (PLA) biomaterials, are able to favor bone tissue regeneration, especially evidenced in animal model calvary defects. In the present study, we investigated whether the enrichment of a rat calvary defect site with CM, EVs and polyethylenimine (PEI)-engineered EVs could substantially modify the bone remodeling kinetics during defect healing, as these products were reported to favor bone regeneration. In particular, we focused the study, performed by synchrotron radiation-based high-resolution tomography, on the analysis of the bone mass density distribution. We proved that the enrichment of a defect site with CM, EVs and PEI-EVs substantially modifies, often accelerating, bone remodeling kinetics and the related mineralization process during defect healing. Moreover, different biomaterials (COL or PLA) in combination with stem cells of different origin (namely, human periodontal ligament stem cells-hPDLSCs and human gingival mesenchymal stem cells-hGMSCs) and their own CM, EVs and PEI-EVs products were shown to exhibit different mineralization kinetics.
KW - Bone-remodeling kinetics
KW - Conditioned medium
KW - Extracellular vesicles
KW - Healing
KW - Synchrotron-based microtomography
UR - http://www.scopus.com/inward/record.url?scp=85083212520&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85083212520&partnerID=8YFLogxK
U2 - 10.3390/app10072336
DO - 10.3390/app10072336
M3 - Article
AN - SCOPUS:85083212520
VL - 10
JO - Applied Sciences (Switzerland)
JF - Applied Sciences (Switzerland)
SN - 2076-3417
IS - 7
M1 - 2336
ER -