Curcumin and Novel Synthetic Analogs in Cell-Based Studies of Alzheimer's Disease

Research output: Contribution to journalArticle

Abstract

Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is associated with the most common type of dementia and is characterized by the presence of deposits of the protein fragment amyloid beta (Aβ) in the brain. The natural product mixture of curcuminoids that improves certain defects in innate immune cells of AD patients may selectively enhance Aβ phagocytosis by alteration of gene transcription. In this work, we evaluated the protective effects of curcuminoids in cells from AD patients by investigating the effect on NF-κB and BACE1 signaling pathways. These results were compared to the gene expression profile of the clearance of Aβ. The minor curcumin constituent, bisdemethoxycurcumin (BDC) showed the most potent protective action to decrease levels of NF-κB and BACE1, decrease the inflammatory cascade and diminish Aβ aggregates in cells from AD patients. Moreover, mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase (MGAT3) and vitamin D receptor (VDR) gene mRNAs were up-regulated in peripheral blood mononuclear cells from AD patients treated with BDC. BDC treatment impacts both gene expression including Mannosyl (Beta-1,4-)-Glycoprotein Beta-1,4-N-Acetylglucosaminyltransferase, Vitamin D and Toll like receptor mRNA and Aβ phagocytosis. The observation of down-regulation of BACE1 and NF-κB following administration of BDC to cells from AD patients as a model system may have utility in the treatment of asymptomatic AD patients.

Original languageEnglish
Pages (from-to)1404
JournalFrontiers in Pharmacology
Volume9
DOIs
Publication statusPublished - 2018

Fingerprint

Curcumin
Alzheimer Disease
beta-1,4-mannosyl-glycoprotein beta-1,4-N-acetylglucosaminyltransferase
Phagocytosis
Asymptomatic Diseases
Messenger RNA
Calcitriol Receptors
Toll-Like Receptors
Amyloid beta-Peptides
Biological Products
Transcriptome
Vitamin D
Neurodegenerative Diseases
Genes
Dementia
Blood Cells
Glycoproteins
Down-Regulation
Observation
Gene Expression

Cite this

@article{21843e868e9e45338ba6e42b56518ce2,
title = "Curcumin and Novel Synthetic Analogs in Cell-Based Studies of Alzheimer's Disease",
abstract = "Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is associated with the most common type of dementia and is characterized by the presence of deposits of the protein fragment amyloid beta (Aβ) in the brain. The natural product mixture of curcuminoids that improves certain defects in innate immune cells of AD patients may selectively enhance Aβ phagocytosis by alteration of gene transcription. In this work, we evaluated the protective effects of curcuminoids in cells from AD patients by investigating the effect on NF-κB and BACE1 signaling pathways. These results were compared to the gene expression profile of the clearance of Aβ. The minor curcumin constituent, bisdemethoxycurcumin (BDC) showed the most potent protective action to decrease levels of NF-κB and BACE1, decrease the inflammatory cascade and diminish Aβ aggregates in cells from AD patients. Moreover, mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase (MGAT3) and vitamin D receptor (VDR) gene mRNAs were up-regulated in peripheral blood mononuclear cells from AD patients treated with BDC. BDC treatment impacts both gene expression including Mannosyl (Beta-1,4-)-Glycoprotein Beta-1,4-N-Acetylglucosaminyltransferase, Vitamin D and Toll like receptor mRNA and Aβ phagocytosis. The observation of down-regulation of BACE1 and NF-κB following administration of BDC to cells from AD patients as a model system may have utility in the treatment of asymptomatic AD patients.",
author = "Stella Gagliardi and Valentina Franco and Stefano Sorrentino and Susanna Zucca and Cecilia Pandini and Paola Rota and Stefano Bernuzzi and Alfredo Costa and Elena Sinforiani and Orietta Pansarasa and Cashman, {John R} and Cristina Cereda",
year = "2018",
doi = "10.3389/fphar.2018.01404",
language = "English",
volume = "9",
pages = "1404",
journal = "Frontiers in Pharmacology",
issn = "1663-9812",
publisher = "Frontiers Media S.A.",

}

TY - JOUR

T1 - Curcumin and Novel Synthetic Analogs in Cell-Based Studies of Alzheimer's Disease

AU - Gagliardi, Stella

AU - Franco, Valentina

AU - Sorrentino, Stefano

AU - Zucca, Susanna

AU - Pandini, Cecilia

AU - Rota, Paola

AU - Bernuzzi, Stefano

AU - Costa, Alfredo

AU - Sinforiani, Elena

AU - Pansarasa, Orietta

AU - Cashman, John R

AU - Cereda, Cristina

PY - 2018

Y1 - 2018

N2 - Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is associated with the most common type of dementia and is characterized by the presence of deposits of the protein fragment amyloid beta (Aβ) in the brain. The natural product mixture of curcuminoids that improves certain defects in innate immune cells of AD patients may selectively enhance Aβ phagocytosis by alteration of gene transcription. In this work, we evaluated the protective effects of curcuminoids in cells from AD patients by investigating the effect on NF-κB and BACE1 signaling pathways. These results were compared to the gene expression profile of the clearance of Aβ. The minor curcumin constituent, bisdemethoxycurcumin (BDC) showed the most potent protective action to decrease levels of NF-κB and BACE1, decrease the inflammatory cascade and diminish Aβ aggregates in cells from AD patients. Moreover, mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase (MGAT3) and vitamin D receptor (VDR) gene mRNAs were up-regulated in peripheral blood mononuclear cells from AD patients treated with BDC. BDC treatment impacts both gene expression including Mannosyl (Beta-1,4-)-Glycoprotein Beta-1,4-N-Acetylglucosaminyltransferase, Vitamin D and Toll like receptor mRNA and Aβ phagocytosis. The observation of down-regulation of BACE1 and NF-κB following administration of BDC to cells from AD patients as a model system may have utility in the treatment of asymptomatic AD patients.

AB - Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is associated with the most common type of dementia and is characterized by the presence of deposits of the protein fragment amyloid beta (Aβ) in the brain. The natural product mixture of curcuminoids that improves certain defects in innate immune cells of AD patients may selectively enhance Aβ phagocytosis by alteration of gene transcription. In this work, we evaluated the protective effects of curcuminoids in cells from AD patients by investigating the effect on NF-κB and BACE1 signaling pathways. These results were compared to the gene expression profile of the clearance of Aβ. The minor curcumin constituent, bisdemethoxycurcumin (BDC) showed the most potent protective action to decrease levels of NF-κB and BACE1, decrease the inflammatory cascade and diminish Aβ aggregates in cells from AD patients. Moreover, mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase (MGAT3) and vitamin D receptor (VDR) gene mRNAs were up-regulated in peripheral blood mononuclear cells from AD patients treated with BDC. BDC treatment impacts both gene expression including Mannosyl (Beta-1,4-)-Glycoprotein Beta-1,4-N-Acetylglucosaminyltransferase, Vitamin D and Toll like receptor mRNA and Aβ phagocytosis. The observation of down-regulation of BACE1 and NF-κB following administration of BDC to cells from AD patients as a model system may have utility in the treatment of asymptomatic AD patients.

U2 - 10.3389/fphar.2018.01404

DO - 10.3389/fphar.2018.01404

M3 - Article

VL - 9

SP - 1404

JO - Frontiers in Pharmacology

JF - Frontiers in Pharmacology

SN - 1663-9812

ER -