Abstract
Microcell production by means of Colcemid-induced micronucleation and subsequent enucleation with the density gradient technique was adjusted for use with the murine T-lymphoma line ESb-M. Modification of the standard protocol for a cell type on which no experiments had previously been performed required careful monitoring of the multiple steps in the procedure in order to optimize the final microcell yield. Traditional microscopic verification may sometimes be ambiguous, due to the lack of a clear cutoff point between small whole cells and cell fragments; in these conditions, the level of variability increases, thus impairing quantitative estimations. Flow cytometric (FCM) analysis of DNA content and size of donor cells and microcells was therefore applied in parallel to provide additional quantitative information. The FCM results supplemented the microscopic data in assessing which fraction recovered from the gradient has the lowest percentage of contaminant whole cells; however, FCM analysis may provide more statistically significant data due to the large size of the sample examined. Moreover, FCM is of prospective use in providing the basis for subsequent sorting of either pure microcells or specific subpopulations of defined DNA content and size.
Original language | English |
---|---|
Pages (from-to) | 59-66 |
Number of pages | 8 |
Journal | Analytical and Quantitative Cytology and Histology |
Volume | 11 |
Issue number | 1 |
Publication status | Published - 1989 |
ASJC Scopus subject areas
- Cell Biology
- Anatomy
- Histology