Defective kinesin binding of TUBB2A causes progressive spastic ataxia syndrome resembling sacsinopathy

A. Sferra, F. Fattori, T. Rizza, E. Flex, E. Bellacchio, A. Bruselles, S. Petrini, S. Cecchetti, M. Teson, F. Restaldi, A. Ciolfi, F.M. Santorelli, G. Zanni, S. Barresi, C. Castiglioni, M. Tartaglia, E. Bertini

Research output: Contribution to journalArticle

Abstract

Microtubules participate in fundamental cellular processes, including chromosomal segregation and cell division, migration and intracellular trafficking. Their proper function is required for correct central nervous system development and operative preservation, and mutations in genes coding tubulins, the constituting units of microtubules, underlie a family of neurodevelopmental and neurodegenerative diseases, collectively known as 'tubulinopathies', characterized by a wide range of neuronal defects resulting from defective proliferation, migration and function. Here, we causally link a previously unreported missense mutation in TUBB2A (c.1249G > A, p.D417N), encoding one of the neuron-specific b-tubulin isotype II, to a disorder characterized by progressive spastic paraplegia, peripheral sensory-motor polyneuropathy and ataxia. Asp417 is a highly conserved solvent-exposed residue at the site mediating binding of kinesin superfamily motors. Impaired binding to KIF1A, a neuron-specific kinesin required for transport of synaptic vesicle precursors of the disease-associated TUBB2A mutant, was predicted by structural analyses and confirmed experimentally in vitro.We show that overexpression of TUBB2AD417N disrupts the mitotic spindle bipolarity and morphology and affects the M phase entry and length. Differently from the TUBB2AN247K and TUBB2AA248V, two mutants previously identified to affect neurodevelopment, TUBB2AD417N retains the ability to assemble into microtubules. Consistent with the differential clinical and structural impact, TUBB2AA248V does not drastically affect TUBB2A binding to KIF1A, nor mitotic spindle bipolarity. Overall, our data demonstrate a pathogenic role of the p.D417N substitution that is different from previously reported TUBB2A mutations and expand the phenotypic spectrum associated with mutations in this gene. © The Author(s) 2018. Published by Oxford University Press. All rights reserved.
Original languageEnglish
Pages (from-to)1892-1904
Number of pages13
JournalHuman Molecular Genetics
Volume27
Issue number11
DOIs
Publication statusPublished - 2018

Fingerprint

Kinesin
Microtubules
Spindle Apparatus
Tubulin
Cell Division
Mutation
Neurons
Transport Vesicles
Polyneuropathies
Synaptic Vesicles
Paraplegia
Missense Mutation
Ataxia
Neurodegenerative Diseases
Genes
Cell Movement
Central Nervous System
Binding Sites
Spastic Ataxia

Keywords

  • beta tubulin
  • kinesin
  • tubulin
  • tubulin b2a
  • unclassified drug
  • KIF1A protein, human
  • protein binding
  • TUBB2A protein, human
  • adult
  • amino acid sequence
  • Article
  • ataxia
  • case report
  • cell cycle M phase
  • cells
  • cerebellum vermis
  • clinical article
  • corpus callosum
  • electromyography
  • electroretinogram
  • fibroblast
  • follow up
  • gene overexpression
  • HEK293 cell line
  • hereditary motor sensory neuropathy
  • human
  • in vitro study
  • macular degeneration
  • male
  • medical history
  • missense mutation
  • mitosis spindle
  • motor nerve conduction
  • muscle atrophy
  • nerve conduction velocity
  • neuroimaging
  • neurologic examination
  • nuclear magnetic resonance imaging
  • optic nerve atrophy
  • optical coherence tomography
  • priority journal
  • protein stability
  • Sanger sequencing
  • somatosensory evoked potential
  • spastic paraplegia
  • spinocerebellar degeneration
  • strabismus
  • synapse vesicle
  • visual evoked potential
  • whole exome sequencing
  • young adult
  • adolescent
  • cell motion
  • cell proliferation
  • child
  • diagnostic imaging
  • female
  • genetics
  • intellectual impairment
  • metabolism
  • microtubule
  • nerve cell
  • paraplegia
  • pathology
  • pathophysiology
  • polyneuropathy
  • sensorimotor cortex
  • spasticity
  • spindle apparatus
  • Adolescent
  • Adult
  • Cell Movement
  • Cell Proliferation
  • Child
  • Female
  • Humans
  • Intellectual Disability
  • Kinesin
  • Male
  • Microtubules
  • Muscle Spasticity
  • Neurons
  • Optic Atrophy
  • Paraplegia
  • Polyneuropathies
  • Protein Binding
  • Sensorimotor Cortex
  • Spindle Apparatus
  • Spinocerebellar Ataxias
  • Spinocerebellar Degenerations
  • Tubulin

Cite this

Defective kinesin binding of TUBB2A causes progressive spastic ataxia syndrome resembling sacsinopathy. / Sferra, A.; Fattori, F.; Rizza, T.; Flex, E.; Bellacchio, E.; Bruselles, A.; Petrini, S.; Cecchetti, S.; Teson, M.; Restaldi, F.; Ciolfi, A.; Santorelli, F.M.; Zanni, G.; Barresi, S.; Castiglioni, C.; Tartaglia, M.; Bertini, E.

In: Human Molecular Genetics, Vol. 27, No. 11, 2018, p. 1892-1904.

Research output: Contribution to journalArticle

Sferra, A, Fattori, F, Rizza, T, Flex, E, Bellacchio, E, Bruselles, A, Petrini, S, Cecchetti, S, Teson, M, Restaldi, F, Ciolfi, A, Santorelli, FM, Zanni, G, Barresi, S, Castiglioni, C, Tartaglia, M & Bertini, E 2018, 'Defective kinesin binding of TUBB2A causes progressive spastic ataxia syndrome resembling sacsinopathy', Human Molecular Genetics, vol. 27, no. 11, pp. 1892-1904. https://doi.org/10.1093/hmg/ddy096
Sferra, A. ; Fattori, F. ; Rizza, T. ; Flex, E. ; Bellacchio, E. ; Bruselles, A. ; Petrini, S. ; Cecchetti, S. ; Teson, M. ; Restaldi, F. ; Ciolfi, A. ; Santorelli, F.M. ; Zanni, G. ; Barresi, S. ; Castiglioni, C. ; Tartaglia, M. ; Bertini, E. / Defective kinesin binding of TUBB2A causes progressive spastic ataxia syndrome resembling sacsinopathy. In: Human Molecular Genetics. 2018 ; Vol. 27, No. 11. pp. 1892-1904.
@article{677877af289e465e849e96315d18c291,
title = "Defective kinesin binding of TUBB2A causes progressive spastic ataxia syndrome resembling sacsinopathy",
abstract = "Microtubules participate in fundamental cellular processes, including chromosomal segregation and cell division, migration and intracellular trafficking. Their proper function is required for correct central nervous system development and operative preservation, and mutations in genes coding tubulins, the constituting units of microtubules, underlie a family of neurodevelopmental and neurodegenerative diseases, collectively known as 'tubulinopathies', characterized by a wide range of neuronal defects resulting from defective proliferation, migration and function. Here, we causally link a previously unreported missense mutation in TUBB2A (c.1249G > A, p.D417N), encoding one of the neuron-specific b-tubulin isotype II, to a disorder characterized by progressive spastic paraplegia, peripheral sensory-motor polyneuropathy and ataxia. Asp417 is a highly conserved solvent-exposed residue at the site mediating binding of kinesin superfamily motors. Impaired binding to KIF1A, a neuron-specific kinesin required for transport of synaptic vesicle precursors of the disease-associated TUBB2A mutant, was predicted by structural analyses and confirmed experimentally in vitro.We show that overexpression of TUBB2AD417N disrupts the mitotic spindle bipolarity and morphology and affects the M phase entry and length. Differently from the TUBB2AN247K and TUBB2AA248V, two mutants previously identified to affect neurodevelopment, TUBB2AD417N retains the ability to assemble into microtubules. Consistent with the differential clinical and structural impact, TUBB2AA248V does not drastically affect TUBB2A binding to KIF1A, nor mitotic spindle bipolarity. Overall, our data demonstrate a pathogenic role of the p.D417N substitution that is different from previously reported TUBB2A mutations and expand the phenotypic spectrum associated with mutations in this gene. {\circledC} The Author(s) 2018. Published by Oxford University Press. All rights reserved.",
keywords = "beta tubulin, kinesin, tubulin, tubulin b2a, unclassified drug, KIF1A protein, human, protein binding, TUBB2A protein, human, adult, amino acid sequence, Article, ataxia, case report, cell cycle M phase, cells, cerebellum vermis, clinical article, corpus callosum, electromyography, electroretinogram, fibroblast, follow up, gene overexpression, HEK293 cell line, hereditary motor sensory neuropathy, human, in vitro study, macular degeneration, male, medical history, missense mutation, mitosis spindle, motor nerve conduction, muscle atrophy, nerve conduction velocity, neuroimaging, neurologic examination, nuclear magnetic resonance imaging, optic nerve atrophy, optical coherence tomography, priority journal, protein stability, Sanger sequencing, somatosensory evoked potential, spastic paraplegia, spinocerebellar degeneration, strabismus, synapse vesicle, visual evoked potential, whole exome sequencing, young adult, adolescent, cell motion, cell proliferation, child, diagnostic imaging, female, genetics, intellectual impairment, metabolism, microtubule, nerve cell, paraplegia, pathology, pathophysiology, polyneuropathy, sensorimotor cortex, spasticity, spindle apparatus, Adolescent, Adult, Cell Movement, Cell Proliferation, Child, Female, Humans, Intellectual Disability, Kinesin, Male, Microtubules, Muscle Spasticity, Neurons, Optic Atrophy, Paraplegia, Polyneuropathies, Protein Binding, Sensorimotor Cortex, Spindle Apparatus, Spinocerebellar Ataxias, Spinocerebellar Degenerations, Tubulin",
author = "A. Sferra and F. Fattori and T. Rizza and E. Flex and E. Bellacchio and A. Bruselles and S. Petrini and S. Cecchetti and M. Teson and F. Restaldi and A. Ciolfi and F.M. Santorelli and G. Zanni and S. Barresi and C. Castiglioni and M. Tartaglia and E. Bertini",
note = "Cited By :3 Export Date: 11 April 2019 CODEN: HMGEE Correspondence Address: Bertini, E.; Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Ospedale Pediatrico Bambino Ges{\`u} IRCCS, V.le S. Paolo, 15, Polo di Ricerca S. Paolo, Italy; email: ebertini@gmail.com Chemicals/CAS: beta tubulin, 87090-36-6; KIF1A protein, human; Kinesin; TUBB2A protein, human; Tubulin Funding details: Ministero della Salute, RC2016, RC2017 Funding text 1: This work was supported in part by grants from Fondazione Bambino Ges{\`u} (Vite Coraggiose to M.T.); Ministero della Salute (RC2016 and RC2017 to M.T. and E.B.). References: Gierke, S., Praveen Kumar, P., Torsten Wittmann, T., Analysis of microtubule polymerization dynamics in live cells (2010) Methods Cell Biol, 97, pp. 15-33; Breuss, M., Keays, D.A., Microtubules and neurodevelopmental disease: the movers and the makers (2014) Adv. Exp. Med. Biol, 800, pp. 75-96; Kapitein, L.C., Hoogenraad, C.C., Building the neuronal microtubule cytoskeleton (2015) Neuron, 87, pp. 492-506; Smith, B.N., Ticozzi, N., Fallini, C., Gkazi, A.S., Topp, S., Kenna, K.P., Scotter, E.L., Miller, J.W., Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS (2014) Neuron, 84, pp. 324-331; Lopata, M.A., Cleveland, D.W., In vivo microtubules are copolymers of available beta-tubulin isotypes: localization of each of six vertebrate beta-tubulin isotypes using polyclonal antibodies elicited by synthetic peptide antigens (1987) J. Cell Biol, 105, pp. 1707-1720; Ludue{\~n}a, R.F., Multiple forms of tubulin: different gene products and covalent modifications (1998) Int. Rev. Cytol, 178, pp. 207-275; Sullivan, K.F., Cleveland, D.W., Identification of conserved isotype-defining variable region sequences for four vertebrate beta tubulin polypeptide classes (1986) Proc. Natl. Acad. Sci. U. S. A, 83, pp. 4327-4331; Cleveland, D.W., The multitubulin hypothesis revisited: what have we learned? (1987) J. Cell Biol, 104, pp. 381-383; Joshi, H.C., Cleveland, D.W., Differential utilization of beta-tubulin isotypes in differentiating neurites (1989) J. Cell Biol, 109, pp. 663-673; Leandro-Garc{\'i}a, L.J., Leskel{\"a}, S., Landa, I., Montero-Conde, C., L{\'o}pez-Jim{\'e}nez, E., Let{\'o}n, R., Casc{\'o}n, A., Rodr{\'i}guez-Antona, C., Tumoral and tissue-specific expression of the major human beta-tubulin isotypes (2010) Cytoskeleton, 67, pp. 214-223; Cushion, T.D., Paciorkowski, A.R., Pilz, D.T., Mullins, J.G., Seltzer, L.E., Marion, R.W., Tuttle, E., Chung, S.K., De novo mutations in the beta-tubulin gene TUBB2A cause simplified gyral patterning and infantile-onset epilepsy (2014) Am. J. Hum. Genet, 94, pp. 634-641; Rodan, L.H., El Achkar, C.M., Berry, G.T., Poduri, A., Prabhu, S.P., Yang, E., Anselm, I., De novo TUBB2A variant presenting with anterior temporal pachygyria (2017) J. Child Neurol, 32, pp. 127-131; Ejaz, R., Lionel, A.C., Blaser, S., Walker, S., Scherer, S.W., Babul-Hirji, R., Marshall, C.R., Chitayat, D., De novo pathogenic variant in TUBB2A presenting with arthrogryposis multiplex congenita, brain abnormalities, and severe developmental delay (2017) Am. J. Med. Genet. A, 173, pp. 2725-2730; Itan, Y., Shang, L., Boisson, B., Patin, E., Bolze, A., Moncada-V{\'e}lez, M., Scott, E., Markle, J.G., The human gene damage index as a gene-level approach to prioritizing exome variants (2015) Proc. Natl. Acad. Sci. U. S. A, 112, pp. 13615-13620; Feng, R., Sang, Q., Kuang, Y., Sun, X., Yan, Z., Zhang, S., Shi, J., Li, B., Mutations in TUBB8 and human oocyte meiotic arrest (2016) N. Engl. J. Med, 374, pp. 223-232; Uchimura, S., Oguchi, Y., Katsuki, M., Usui, T., Osada, H., Nikawa, J., Ishiwata, S., Muto, E., Identification of a strong binding site for kinesin on the microtubule using mutant analysis of tubulin (2006) EMBO J, 25, pp. 5932-5941; Uchimura, S., Oguchi, Y., Hachikubo, Y., Ishiwata, S., Muto, E., Key residues on microtubule responsible for activation of kinesin ATPase (2010) EMBO J, 29, pp. 1167-1175; Niwa, S., Takahashi, H., Hirokawa, N., b-Tubulin mutations that cause severe neuropathies disrupt axonal transport (2013) EMBO J, 32, pp. 1352-1364; Ti, S.C., Pamula, M.C., Howes, S.C., Duellberg, C., Cade, N.I., Kleiner, R.E., Forth, S., Kapoor, T.M., Mutations in human tubulin proximal to the kinesin-binding site alter dynamic instability at microtubule plus-and minus-ends (2016) Dev. Cell, 37, pp. 72-84; Tischfield, M.A., Baris, H.N., Wu, C., Rudolph, G., Van Maldergem, L., He, W., Chan, W.M., Robertson, R.L., Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance (2010) Cell, 140, pp. 74-87; Hirokawa, N., Noda, Y., Tanaka, Y., Niwa, S., Kinesin superfamily motor proteins and intracellular transport (2009) Nat. Rev. Mol. Cell Biol, 10, pp. 682-696; Hirokawa, N., Niwa, S., Tanaka, Y., Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease (2010) Neuron, 68, pp. 610-638; Cross, R.A., McAinsh, A., Prime movers: the mechanochemistry of mitotic kinesins (2014) Nat. Rev. Mol. Cell Biol, 15, pp. 257-271; Bahi-Buisson, N., Cavallin, M., (2016) GeneReviews Seattle, , https://www.ncbi.nlm.nih.gov/books/NBK350554/, WA: University of Washington, Seattle, 1993-2017, 2016; Thomas, P., Fenech, M., Chromosome 17 and 21 aneuploidy in buccal cells is increased with ageing and in Alzheimer's disease (2007) Mutagenesis, 23, pp. 57-65; Faggioli, F., Vijg, J., Montagna, C., Chromosomal aneuploidy in the aging brain (2011) Mech. Aging Dev, 132, pp. 429-436; Oromendia, A.B., Amon, A., Aneuploidy: implications for protein homeostasis and disease (2014) Dis. Model. Mech, 7, pp. 15-20; Siegel, J.J., Amon, A., New insights into the troubles of aneuploidy (2012) Annu. Rev. Cell Dev. Biol, 28, pp. 189-214; Sathasivam, K., Woodman, B., Mahal, A., Bertaux, F., Wanker, E.E., Shima, D.T., Bates, G.P., Centrosome disorganization in fibroblast cultures derived from R6/2 Huntington's disease (HD) transgenic mice and HD patients (2001) Hum. Mol. Genet, 10, pp. 2425-2435; Iourov, I.Y., Vorsanova, S.G., Liehr, T., Yurov, Y.B., Aneuploidy in the normal, Alzheimer's disease and ataxia-telangiectasia brain: differential expression and pathological meaning (2009) Neurobiol. Dis, 34, pp. 212-220; Mosch, B., Morawski, M., Mittag, A., Lenz, D., Tarnok, A., Arendt, T.J., Aneuploidy and DNA replication in the normal human brain and Alzheimer's disease (2007) J. Neurosci, 27, pp. 6686-6859; Yurov, Y.B., Vorsanova, S.G., Liehr, T., Kolotii, A.D., Iourov, I.Y., X chromosome aneuploidy in the Alzheimer's disease brain (2014) Mol. Cytogenet, 7, p. 20; Arendt, T., Br{\"u}ckner, M.K., Mosch, B., L{\"o}sche, A., Selective cell death of hyperploid neurons in Alzheimer's disease (2010) Am. J. Pathol, 177, pp. 15-20; Okada, Y., Yamazaki, H., Sekine-Aizawa, Y., Hirokawa, N., The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors (1995) Cell, 81, pp. 769-780; Hotchkiss, L., Donkervoort, S., Leach, M.E., Mohassel, P., Bharucha-Goebel, D.X., Bradley, N., Nguyen, D., B{\"o}nnemann, C.G., Novel de novo mutations in KIF1A as a cause of hereditary spastic paraplegia with progressive central nervous system involvement (2016) J. Child Neurol, 31, pp. 1114-1119; Lee, J.R., Srour, M., Kim, D., Hamdan, F.F., Lim, S.H., Brunel-Guitton, C., D{\'e}carie, J.C., Schreiber, A., De novo mutations in the motor domain of KIF1A cause cognitive impairment, spastic paraparesis, axonal neuropathy, and cerebellar atrophy (2015) Hum. Mutat, 36, pp. 69-78; Esmaeeli, N.S., Madou, M.R., Sirajuddin, M., Fregeau, B., McKnight, D., Lexa, K., Strober, J., Smaoui, N., De novo mutations in KIF1A cause progressive encephalopathy and brain atrophy (2015) Ann. Clin. Transl. Neurol, 2, pp. 623-635; Tomaselli, P.J., Rossor, A.M., Horga, A., Laura, M., Blake, J.C., Houlden, H., Reilly, M.M., A de novo dominant mutation in KIF1A associated with axonal neuropathy, spasticity and autism spectrum disorder (2017) J. Peripher. Nerv. Syst; Yonekawa, Y., Harada, A., Okada, Y., Funakoshi, T., Kanai, Y., Takei, Y., Terada, S., Hirokawa, N., Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice (1998) J. Cell Biol, 141, pp. 431-441; Borysov, S.I., Granic, A., Padmanabhan, J., Walczak, C.E., Potter, H., Alzheimer Ab disrupts the mitotic spindle and directly inhibits mitotic microtubule motors (2011) Cell Cycle, 10, pp. 1397-1410; Boug{\'e}, A.L., Parmentier, M.L., Tau excess impairs mitosis and kinesin-5 function, leading to aneuploidy and cell death (2016) Dis. Model. Mech, 9, pp. 307-319; Wordeman, L., How kinesin motor proteins drive mitotic spindle function: lessons from molecular assays (2010) Semin. Cell Dev. Biol, 21, pp. 260-268; Goshima, G., Vale, R.D., The roles of microtubule-based motor proteins in mitosis comprehensive RNAi analysis in the Drosophila S2 cell line (2003) J. Cell Biol, 162, pp. 1003-1016; Blangy, A., Lane, H.A., D'Herin, P., Harper, M., Kress, S.M., Nigg, E.A., Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo (1995) Cell, 63, pp. 1159-1169; Heck, M.M., Pereira, A., Pesavento, P., Yannoni, Y., Spradling, A.C., Goldstein, L.S.B., The kinesin-like protein KLP61F is essential for mitosis in Drosophila (1993) J. Cell Biol, 123, pp. 665-679; Hoyt, M.A., He, L., Loo, K.K., Saunders, W.S., Two Saccharomyces cerevisiae kinesin-rrelated gene products required for mitotic spindle assembly (1992) J. Cell Biol, 118, pp. 109-120; Roof, D.M., Meluh, P.B., Rose, M.D., Kinesin-related proteins required for the assembly of the mitotic spindle (1992) J. Cell Biol, 118, pp. 95-108; Sawin, K.E., LeGuellec, K., Philippe, M., Mitchison, T.J., Mitotic spindle organization by a plus-end directed microtubule motor (1992) Nature, 359, pp. 540-543; Saunders, W.S., Hoyt, M.A., Kinesin-related proteins required for the structural integrity of the mitotic spindle (1992) Cell, 70, pp. 451-458; Zhao, C., Takita, J., Tanaka, Y., Setou, M., Nakagawa, T., Takeda, S., Yang, H.W., Takei, Y., Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta (2001) Cell, 105, pp. 587-597; Dor, T., Cinnamon, Y., Raymond, L., Shaag, A., Bouslam, N., Bouhouche, A., Gaussen, M., Brice, A., KIF1C mutations in two families with hereditary spastic paraparesis and cerebellar dysfunction (2014) J. Med. Genet, 51, pp. 137-142; Caballero Oteyza, A., Battalolu, E., Ocek, L., Lindig, T., Reichbauer, J., Rebelo, A.P., Gonzalez, M.A., Timmann, D., Motor protein mutations cause a new form of hereditary spastic paraplegia (2014) Neurology, 82, pp. 2007-2016; Niceta, M., Stellacci, E., Gripp, K.W., Tartaglia, M., Mutations impairing GSK3-mediated MAF phosphorylation cause cataract, deafness, intellectual disability, seizures, and a down syndrome-like facies (2015) Am. J. Hum. Genet, 96, pp. 816-825; Flex, E., Niceta, M., Cecchetti, S., Thiffault, I., Au, M.G., Capuano, A., Piermarini, E., Chillemi, G., Biallelic mutations in TBCD, encoding the tubulin folding cofactor D, perturb microtubule dynamics and cause early-onset encephalopathy (2016) Am. J. Hum. Genet, 99, pp. 962-973; Sferra, A., Baillat, G., Rizza, T., Barresi, S., Flex, E., Tasca, G., D'Amico, A., Caputo, V., TBCE mutations cause early-onset progressive encephalopathy with distal spinal muscular atrophy (2016) Am. J. Hum. Genet, 99, pp. 974-983; Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., Banks, E., Fennell, T., O'Donnell-Luria, A.H., Cummings, B.B., Exome Aggregation Consortium (2016) Analysis of protein-coding genetic variation in, 60, p. 706. , humans. Nature, 536, 285-291; Cingolani, P., Platts, A., Wang le, L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Ruden, D.M., A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118 (2012) Fly, 6, pp. 80-92; Liu, X., Wu, C., Li, C., Boerwinkle, E., dbNSFP v3.0: a one-stop database of functional predictions and annotations for human nonsynonymous and splice-site SNVs (2016) Hum. Mutat, 37, pp. 235-241; Kircher, M., Witten, D.M., Jain, P., O'Roak, B.J., Cooper, G.M., Shendure, J., A general framework for estimating the relative pathogenicity of human genetic variants (2014) Nat. Genet, 46, pp. 310-315; Nagata, K., Randall, A., Baldi, P., SIDEpro: a novel machine learning approach for the fast and accurate prediction of side-chain conformations (2012) Proteins, 80, pp. 142-153",
year = "2018",
doi = "10.1093/hmg/ddy096",
language = "English",
volume = "27",
pages = "1892--1904",
journal = "Human Molecular Genetics",
issn = "0964-6906",
publisher = "Oxford University Press",
number = "11",

}

TY - JOUR

T1 - Defective kinesin binding of TUBB2A causes progressive spastic ataxia syndrome resembling sacsinopathy

AU - Sferra, A.

AU - Fattori, F.

AU - Rizza, T.

AU - Flex, E.

AU - Bellacchio, E.

AU - Bruselles, A.

AU - Petrini, S.

AU - Cecchetti, S.

AU - Teson, M.

AU - Restaldi, F.

AU - Ciolfi, A.

AU - Santorelli, F.M.

AU - Zanni, G.

AU - Barresi, S.

AU - Castiglioni, C.

AU - Tartaglia, M.

AU - Bertini, E.

N1 - Cited By :3 Export Date: 11 April 2019 CODEN: HMGEE Correspondence Address: Bertini, E.; Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Ospedale Pediatrico Bambino Gesù IRCCS, V.le S. Paolo, 15, Polo di Ricerca S. Paolo, Italy; email: ebertini@gmail.com Chemicals/CAS: beta tubulin, 87090-36-6; KIF1A protein, human; Kinesin; TUBB2A protein, human; Tubulin Funding details: Ministero della Salute, RC2016, RC2017 Funding text 1: This work was supported in part by grants from Fondazione Bambino Gesù (Vite Coraggiose to M.T.); Ministero della Salute (RC2016 and RC2017 to M.T. and E.B.). References: Gierke, S., Praveen Kumar, P., Torsten Wittmann, T., Analysis of microtubule polymerization dynamics in live cells (2010) Methods Cell Biol, 97, pp. 15-33; Breuss, M., Keays, D.A., Microtubules and neurodevelopmental disease: the movers and the makers (2014) Adv. Exp. Med. Biol, 800, pp. 75-96; Kapitein, L.C., Hoogenraad, C.C., Building the neuronal microtubule cytoskeleton (2015) Neuron, 87, pp. 492-506; Smith, B.N., Ticozzi, N., Fallini, C., Gkazi, A.S., Topp, S., Kenna, K.P., Scotter, E.L., Miller, J.W., Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS (2014) Neuron, 84, pp. 324-331; Lopata, M.A., Cleveland, D.W., In vivo microtubules are copolymers of available beta-tubulin isotypes: localization of each of six vertebrate beta-tubulin isotypes using polyclonal antibodies elicited by synthetic peptide antigens (1987) J. Cell Biol, 105, pp. 1707-1720; Ludueña, R.F., Multiple forms of tubulin: different gene products and covalent modifications (1998) Int. Rev. Cytol, 178, pp. 207-275; Sullivan, K.F., Cleveland, D.W., Identification of conserved isotype-defining variable region sequences for four vertebrate beta tubulin polypeptide classes (1986) Proc. Natl. Acad. Sci. U. S. A, 83, pp. 4327-4331; Cleveland, D.W., The multitubulin hypothesis revisited: what have we learned? (1987) J. Cell Biol, 104, pp. 381-383; Joshi, H.C., Cleveland, D.W., Differential utilization of beta-tubulin isotypes in differentiating neurites (1989) J. Cell Biol, 109, pp. 663-673; Leandro-García, L.J., Leskelä, S., Landa, I., Montero-Conde, C., López-Jiménez, E., Letón, R., Cascón, A., Rodríguez-Antona, C., Tumoral and tissue-specific expression of the major human beta-tubulin isotypes (2010) Cytoskeleton, 67, pp. 214-223; Cushion, T.D., Paciorkowski, A.R., Pilz, D.T., Mullins, J.G., Seltzer, L.E., Marion, R.W., Tuttle, E., Chung, S.K., De novo mutations in the beta-tubulin gene TUBB2A cause simplified gyral patterning and infantile-onset epilepsy (2014) Am. J. Hum. Genet, 94, pp. 634-641; Rodan, L.H., El Achkar, C.M., Berry, G.T., Poduri, A., Prabhu, S.P., Yang, E., Anselm, I., De novo TUBB2A variant presenting with anterior temporal pachygyria (2017) J. Child Neurol, 32, pp. 127-131; Ejaz, R., Lionel, A.C., Blaser, S., Walker, S., Scherer, S.W., Babul-Hirji, R., Marshall, C.R., Chitayat, D., De novo pathogenic variant in TUBB2A presenting with arthrogryposis multiplex congenita, brain abnormalities, and severe developmental delay (2017) Am. J. Med. Genet. A, 173, pp. 2725-2730; Itan, Y., Shang, L., Boisson, B., Patin, E., Bolze, A., Moncada-Vélez, M., Scott, E., Markle, J.G., The human gene damage index as a gene-level approach to prioritizing exome variants (2015) Proc. Natl. Acad. Sci. U. S. A, 112, pp. 13615-13620; Feng, R., Sang, Q., Kuang, Y., Sun, X., Yan, Z., Zhang, S., Shi, J., Li, B., Mutations in TUBB8 and human oocyte meiotic arrest (2016) N. Engl. J. Med, 374, pp. 223-232; Uchimura, S., Oguchi, Y., Katsuki, M., Usui, T., Osada, H., Nikawa, J., Ishiwata, S., Muto, E., Identification of a strong binding site for kinesin on the microtubule using mutant analysis of tubulin (2006) EMBO J, 25, pp. 5932-5941; Uchimura, S., Oguchi, Y., Hachikubo, Y., Ishiwata, S., Muto, E., Key residues on microtubule responsible for activation of kinesin ATPase (2010) EMBO J, 29, pp. 1167-1175; Niwa, S., Takahashi, H., Hirokawa, N., b-Tubulin mutations that cause severe neuropathies disrupt axonal transport (2013) EMBO J, 32, pp. 1352-1364; Ti, S.C., Pamula, M.C., Howes, S.C., Duellberg, C., Cade, N.I., Kleiner, R.E., Forth, S., Kapoor, T.M., Mutations in human tubulin proximal to the kinesin-binding site alter dynamic instability at microtubule plus-and minus-ends (2016) Dev. Cell, 37, pp. 72-84; Tischfield, M.A., Baris, H.N., Wu, C., Rudolph, G., Van Maldergem, L., He, W., Chan, W.M., Robertson, R.L., Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance (2010) Cell, 140, pp. 74-87; Hirokawa, N., Noda, Y., Tanaka, Y., Niwa, S., Kinesin superfamily motor proteins and intracellular transport (2009) Nat. Rev. Mol. Cell Biol, 10, pp. 682-696; Hirokawa, N., Niwa, S., Tanaka, Y., Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease (2010) Neuron, 68, pp. 610-638; Cross, R.A., McAinsh, A., Prime movers: the mechanochemistry of mitotic kinesins (2014) Nat. Rev. Mol. Cell Biol, 15, pp. 257-271; Bahi-Buisson, N., Cavallin, M., (2016) GeneReviews Seattle, , https://www.ncbi.nlm.nih.gov/books/NBK350554/, WA: University of Washington, Seattle, 1993-2017, 2016; Thomas, P., Fenech, M., Chromosome 17 and 21 aneuploidy in buccal cells is increased with ageing and in Alzheimer's disease (2007) Mutagenesis, 23, pp. 57-65; Faggioli, F., Vijg, J., Montagna, C., Chromosomal aneuploidy in the aging brain (2011) Mech. Aging Dev, 132, pp. 429-436; Oromendia, A.B., Amon, A., Aneuploidy: implications for protein homeostasis and disease (2014) Dis. Model. Mech, 7, pp. 15-20; Siegel, J.J., Amon, A., New insights into the troubles of aneuploidy (2012) Annu. Rev. Cell Dev. Biol, 28, pp. 189-214; Sathasivam, K., Woodman, B., Mahal, A., Bertaux, F., Wanker, E.E., Shima, D.T., Bates, G.P., Centrosome disorganization in fibroblast cultures derived from R6/2 Huntington's disease (HD) transgenic mice and HD patients (2001) Hum. Mol. Genet, 10, pp. 2425-2435; Iourov, I.Y., Vorsanova, S.G., Liehr, T., Yurov, Y.B., Aneuploidy in the normal, Alzheimer's disease and ataxia-telangiectasia brain: differential expression and pathological meaning (2009) Neurobiol. Dis, 34, pp. 212-220; Mosch, B., Morawski, M., Mittag, A., Lenz, D., Tarnok, A., Arendt, T.J., Aneuploidy and DNA replication in the normal human brain and Alzheimer's disease (2007) J. Neurosci, 27, pp. 6686-6859; Yurov, Y.B., Vorsanova, S.G., Liehr, T., Kolotii, A.D., Iourov, I.Y., X chromosome aneuploidy in the Alzheimer's disease brain (2014) Mol. Cytogenet, 7, p. 20; Arendt, T., Brückner, M.K., Mosch, B., Lösche, A., Selective cell death of hyperploid neurons in Alzheimer's disease (2010) Am. J. Pathol, 177, pp. 15-20; Okada, Y., Yamazaki, H., Sekine-Aizawa, Y., Hirokawa, N., The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors (1995) Cell, 81, pp. 769-780; Hotchkiss, L., Donkervoort, S., Leach, M.E., Mohassel, P., Bharucha-Goebel, D.X., Bradley, N., Nguyen, D., Bönnemann, C.G., Novel de novo mutations in KIF1A as a cause of hereditary spastic paraplegia with progressive central nervous system involvement (2016) J. Child Neurol, 31, pp. 1114-1119; Lee, J.R., Srour, M., Kim, D., Hamdan, F.F., Lim, S.H., Brunel-Guitton, C., Décarie, J.C., Schreiber, A., De novo mutations in the motor domain of KIF1A cause cognitive impairment, spastic paraparesis, axonal neuropathy, and cerebellar atrophy (2015) Hum. Mutat, 36, pp. 69-78; Esmaeeli, N.S., Madou, M.R., Sirajuddin, M., Fregeau, B., McKnight, D., Lexa, K., Strober, J., Smaoui, N., De novo mutations in KIF1A cause progressive encephalopathy and brain atrophy (2015) Ann. Clin. Transl. Neurol, 2, pp. 623-635; Tomaselli, P.J., Rossor, A.M., Horga, A., Laura, M., Blake, J.C., Houlden, H., Reilly, M.M., A de novo dominant mutation in KIF1A associated with axonal neuropathy, spasticity and autism spectrum disorder (2017) J. Peripher. Nerv. Syst; Yonekawa, Y., Harada, A., Okada, Y., Funakoshi, T., Kanai, Y., Takei, Y., Terada, S., Hirokawa, N., Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice (1998) J. Cell Biol, 141, pp. 431-441; Borysov, S.I., Granic, A., Padmanabhan, J., Walczak, C.E., Potter, H., Alzheimer Ab disrupts the mitotic spindle and directly inhibits mitotic microtubule motors (2011) Cell Cycle, 10, pp. 1397-1410; Bougé, A.L., Parmentier, M.L., Tau excess impairs mitosis and kinesin-5 function, leading to aneuploidy and cell death (2016) Dis. Model. Mech, 9, pp. 307-319; Wordeman, L., How kinesin motor proteins drive mitotic spindle function: lessons from molecular assays (2010) Semin. Cell Dev. Biol, 21, pp. 260-268; Goshima, G., Vale, R.D., The roles of microtubule-based motor proteins in mitosis comprehensive RNAi analysis in the Drosophila S2 cell line (2003) J. Cell Biol, 162, pp. 1003-1016; Blangy, A., Lane, H.A., D'Herin, P., Harper, M., Kress, S.M., Nigg, E.A., Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo (1995) Cell, 63, pp. 1159-1169; Heck, M.M., Pereira, A., Pesavento, P., Yannoni, Y., Spradling, A.C., Goldstein, L.S.B., The kinesin-like protein KLP61F is essential for mitosis in Drosophila (1993) J. Cell Biol, 123, pp. 665-679; Hoyt, M.A., He, L., Loo, K.K., Saunders, W.S., Two Saccharomyces cerevisiae kinesin-rrelated gene products required for mitotic spindle assembly (1992) J. Cell Biol, 118, pp. 109-120; Roof, D.M., Meluh, P.B., Rose, M.D., Kinesin-related proteins required for the assembly of the mitotic spindle (1992) J. Cell Biol, 118, pp. 95-108; Sawin, K.E., LeGuellec, K., Philippe, M., Mitchison, T.J., Mitotic spindle organization by a plus-end directed microtubule motor (1992) Nature, 359, pp. 540-543; Saunders, W.S., Hoyt, M.A., Kinesin-related proteins required for the structural integrity of the mitotic spindle (1992) Cell, 70, pp. 451-458; Zhao, C., Takita, J., Tanaka, Y., Setou, M., Nakagawa, T., Takeda, S., Yang, H.W., Takei, Y., Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta (2001) Cell, 105, pp. 587-597; Dor, T., Cinnamon, Y., Raymond, L., Shaag, A., Bouslam, N., Bouhouche, A., Gaussen, M., Brice, A., KIF1C mutations in two families with hereditary spastic paraparesis and cerebellar dysfunction (2014) J. Med. Genet, 51, pp. 137-142; Caballero Oteyza, A., Battalolu, E., Ocek, L., Lindig, T., Reichbauer, J., Rebelo, A.P., Gonzalez, M.A., Timmann, D., Motor protein mutations cause a new form of hereditary spastic paraplegia (2014) Neurology, 82, pp. 2007-2016; Niceta, M., Stellacci, E., Gripp, K.W., Tartaglia, M., Mutations impairing GSK3-mediated MAF phosphorylation cause cataract, deafness, intellectual disability, seizures, and a down syndrome-like facies (2015) Am. J. Hum. Genet, 96, pp. 816-825; Flex, E., Niceta, M., Cecchetti, S., Thiffault, I., Au, M.G., Capuano, A., Piermarini, E., Chillemi, G., Biallelic mutations in TBCD, encoding the tubulin folding cofactor D, perturb microtubule dynamics and cause early-onset encephalopathy (2016) Am. J. Hum. Genet, 99, pp. 962-973; Sferra, A., Baillat, G., Rizza, T., Barresi, S., Flex, E., Tasca, G., D'Amico, A., Caputo, V., TBCE mutations cause early-onset progressive encephalopathy with distal spinal muscular atrophy (2016) Am. J. Hum. Genet, 99, pp. 974-983; Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., Banks, E., Fennell, T., O'Donnell-Luria, A.H., Cummings, B.B., Exome Aggregation Consortium (2016) Analysis of protein-coding genetic variation in, 60, p. 706. , humans. Nature, 536, 285-291; Cingolani, P., Platts, A., Wang le, L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Ruden, D.M., A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118 (2012) Fly, 6, pp. 80-92; Liu, X., Wu, C., Li, C., Boerwinkle, E., dbNSFP v3.0: a one-stop database of functional predictions and annotations for human nonsynonymous and splice-site SNVs (2016) Hum. Mutat, 37, pp. 235-241; Kircher, M., Witten, D.M., Jain, P., O'Roak, B.J., Cooper, G.M., Shendure, J., A general framework for estimating the relative pathogenicity of human genetic variants (2014) Nat. Genet, 46, pp. 310-315; Nagata, K., Randall, A., Baldi, P., SIDEpro: a novel machine learning approach for the fast and accurate prediction of side-chain conformations (2012) Proteins, 80, pp. 142-153

PY - 2018

Y1 - 2018

N2 - Microtubules participate in fundamental cellular processes, including chromosomal segregation and cell division, migration and intracellular trafficking. Their proper function is required for correct central nervous system development and operative preservation, and mutations in genes coding tubulins, the constituting units of microtubules, underlie a family of neurodevelopmental and neurodegenerative diseases, collectively known as 'tubulinopathies', characterized by a wide range of neuronal defects resulting from defective proliferation, migration and function. Here, we causally link a previously unreported missense mutation in TUBB2A (c.1249G > A, p.D417N), encoding one of the neuron-specific b-tubulin isotype II, to a disorder characterized by progressive spastic paraplegia, peripheral sensory-motor polyneuropathy and ataxia. Asp417 is a highly conserved solvent-exposed residue at the site mediating binding of kinesin superfamily motors. Impaired binding to KIF1A, a neuron-specific kinesin required for transport of synaptic vesicle precursors of the disease-associated TUBB2A mutant, was predicted by structural analyses and confirmed experimentally in vitro.We show that overexpression of TUBB2AD417N disrupts the mitotic spindle bipolarity and morphology and affects the M phase entry and length. Differently from the TUBB2AN247K and TUBB2AA248V, two mutants previously identified to affect neurodevelopment, TUBB2AD417N retains the ability to assemble into microtubules. Consistent with the differential clinical and structural impact, TUBB2AA248V does not drastically affect TUBB2A binding to KIF1A, nor mitotic spindle bipolarity. Overall, our data demonstrate a pathogenic role of the p.D417N substitution that is different from previously reported TUBB2A mutations and expand the phenotypic spectrum associated with mutations in this gene. © The Author(s) 2018. Published by Oxford University Press. All rights reserved.

AB - Microtubules participate in fundamental cellular processes, including chromosomal segregation and cell division, migration and intracellular trafficking. Their proper function is required for correct central nervous system development and operative preservation, and mutations in genes coding tubulins, the constituting units of microtubules, underlie a family of neurodevelopmental and neurodegenerative diseases, collectively known as 'tubulinopathies', characterized by a wide range of neuronal defects resulting from defective proliferation, migration and function. Here, we causally link a previously unreported missense mutation in TUBB2A (c.1249G > A, p.D417N), encoding one of the neuron-specific b-tubulin isotype II, to a disorder characterized by progressive spastic paraplegia, peripheral sensory-motor polyneuropathy and ataxia. Asp417 is a highly conserved solvent-exposed residue at the site mediating binding of kinesin superfamily motors. Impaired binding to KIF1A, a neuron-specific kinesin required for transport of synaptic vesicle precursors of the disease-associated TUBB2A mutant, was predicted by structural analyses and confirmed experimentally in vitro.We show that overexpression of TUBB2AD417N disrupts the mitotic spindle bipolarity and morphology and affects the M phase entry and length. Differently from the TUBB2AN247K and TUBB2AA248V, two mutants previously identified to affect neurodevelopment, TUBB2AD417N retains the ability to assemble into microtubules. Consistent with the differential clinical and structural impact, TUBB2AA248V does not drastically affect TUBB2A binding to KIF1A, nor mitotic spindle bipolarity. Overall, our data demonstrate a pathogenic role of the p.D417N substitution that is different from previously reported TUBB2A mutations and expand the phenotypic spectrum associated with mutations in this gene. © The Author(s) 2018. Published by Oxford University Press. All rights reserved.

KW - beta tubulin

KW - kinesin

KW - tubulin

KW - tubulin b2a

KW - unclassified drug

KW - KIF1A protein, human

KW - protein binding

KW - TUBB2A protein, human

KW - adult

KW - amino acid sequence

KW - Article

KW - ataxia

KW - case report

KW - cell cycle M phase

KW - cells

KW - cerebellum vermis

KW - clinical article

KW - corpus callosum

KW - electromyography

KW - electroretinogram

KW - fibroblast

KW - follow up

KW - gene overexpression

KW - HEK293 cell line

KW - hereditary motor sensory neuropathy

KW - human

KW - in vitro study

KW - macular degeneration

KW - male

KW - medical history

KW - missense mutation

KW - mitosis spindle

KW - motor nerve conduction

KW - muscle atrophy

KW - nerve conduction velocity

KW - neuroimaging

KW - neurologic examination

KW - nuclear magnetic resonance imaging

KW - optic nerve atrophy

KW - optical coherence tomography

KW - priority journal

KW - protein stability

KW - Sanger sequencing

KW - somatosensory evoked potential

KW - spastic paraplegia

KW - spinocerebellar degeneration

KW - strabismus

KW - synapse vesicle

KW - visual evoked potential

KW - whole exome sequencing

KW - young adult

KW - adolescent

KW - cell motion

KW - cell proliferation

KW - child

KW - diagnostic imaging

KW - female

KW - genetics

KW - intellectual impairment

KW - metabolism

KW - microtubule

KW - nerve cell

KW - paraplegia

KW - pathology

KW - pathophysiology

KW - polyneuropathy

KW - sensorimotor cortex

KW - spasticity

KW - spindle apparatus

KW - Adolescent

KW - Adult

KW - Cell Movement

KW - Cell Proliferation

KW - Child

KW - Female

KW - Humans

KW - Intellectual Disability

KW - Kinesin

KW - Male

KW - Microtubules

KW - Muscle Spasticity

KW - Neurons

KW - Optic Atrophy

KW - Paraplegia

KW - Polyneuropathies

KW - Protein Binding

KW - Sensorimotor Cortex

KW - Spindle Apparatus

KW - Spinocerebellar Ataxias

KW - Spinocerebellar Degenerations

KW - Tubulin

U2 - 10.1093/hmg/ddy096

DO - 10.1093/hmg/ddy096

M3 - Article

VL - 27

SP - 1892

EP - 1904

JO - Human Molecular Genetics

JF - Human Molecular Genetics

SN - 0964-6906

IS - 11

ER -