@article{9e32cd9311b640fba34135cc38ba7e4c,
title = "Deregulation of miRNAs-cMYC circuits is a key event in refractory celiac disease type-2 lymphomagenesis: Clinical Science",
abstract = "A percentage of celiac disease (CD) patients develop refractory type-2 disease (RCD2), a condition associated with increased risk of enteropathy-associated T-cell-lymphoma (EATL) and without therapeutic option. Therefore, we profiled the miRNome in series of peripheral T-cell lymphomas (PTCLs), CD, RCD1 or 2 and in the murine interleukin-15 (IL15)-transgenic (TG) model of RCD. The transcriptome was analyzed in 18 intestinal T-cell lymphomas (ITLs). Bioinformatics pipelines provided significant microRNA (miRNA) lists and predicted targets that were confirmed in a second set of patients. Our data show that ITLs have a unique miRNA profile with respect to other PTCLs. The c-MYC regulated miR-17/92 cluster distinguishes monomorphic epitheliotropic ITL (MEITL) from EATL and prognosticates EATL outcome. These miRNAs are decreased in IL15-TG mice upon Janus kinase (JAK) inhibition. The random forest algorithm identified a signature of 38 classifier miRNAs, among which, themiR-200 and miR-192/215 families were progressively lost in RCD2 and ITL-CD, whereas miR-17/92 and C19MCmiRNAs were up-regulated. Accordingly, SMAD3,MDM2, c-Myc and activated-STAT3 were increased in RCD2 and EATL tissues while JAK inhibition in IL15-TG mice restored their levels to baseline. Our data suggest that miRNAs circuit supports activation of STAT3 and c-Myc oncogenic signaling in RCD2, thus contributing to lymphomagenesis. This novel understanding might pave the way to personalized medicine approaches for RCD and EATL. {\textcopyright}2020 The Author(s).",
keywords = "CD2 antigen, CD20 antigen, CD3 antigen, CD4 antigen, CD5 antigen, CD56 antigen, CD7 antigen, CD8 antigen, granzyme B, interleukin 15, Janus kinase, Ki 67 antigen, microRNA, microRNA 106a 5p, microRNA 17, microRNA 17 5p, microRNA 195, microRNA 19b 3p, microRNA 200, microRNA 20b 5p, microRNA 215, microRNA 92, microRNA 92a 3p, Myc protein, perforin, protein MDM2, Smad3 protein, STAT3 protein, T lymphocyte receptor gamma chain, transcriptome, unclassified drug, CD103 antigen, microRNA 17 p, microRNA 192, microRNA 19b 1 5p, tumor necrosis factor receptor superfamily member 8, tumor marker, anaplastic large cell lymphoma, angioimmunoblastic t cell lymphoma, animal cell, animal experiment, animal model, animal tissue, Article, bioinformatics, cancer survival, celiac disease, classifier, clinical article, cohort analysis, controlled study, duodenum biopsy, enzyme inhibition, female, gene expression profiling, gene targeting, human, human cell, intestine lymphoma, intestine villus atrophy, mouse, NK T cell lymphoma, nonhuman, peripheral T cell lymphoma, priority journal, prognosis, protein RNA binding, random forest, refractory celiac disease type 2 lymphomagenesis, regulatory mechanism, upregulation, aged, cancer prognosis, celiac disease type 2, down regulation, gene amplification, human tissue, immunohistochemistry, immunophenotyping, intestine cell, male, personalized medicine, protein expression, retrospective study, RNA purification, T lymphocyte, algorithm, animal, biological model, carcinogenesis, gene expression regulation, genetics, intestine, lymphoma, metabolism, pathology, transgenic mouse, Algorithms, Animals, Biomarkers, Tumor, Carcinogenesis, Celiac Disease, Female, Gene Expression Regulation, Neoplastic, Intestines, Lymphoma, Male, Mice, Transgenic, MicroRNAs, Models, Biological, Prognosis, Proto-Oncogene Proteins c-mdm2, Proto-Oncogene Proteins c-myc, Smad3 Protein, Up-Regulation",
author = "V. Vaira and G. Gaudioso and M.A. Laginestra and A. Terrasi and C. Agostinelli and S. Bosari and {Di Sabatino}, A. and A. Vanoli and M. Paulli and S. Ferrero and L. Roncoroni and V. Lombardo and L.P. Perera and S. Fabris and Maurizio Vecchi and S. Pileri and L. Elli",
note = "Cited By :3 Export Date: 5 March 2021 CODEN: CSCIA Correspondence Address: Vaira, V.; Division of Pathology, Italy; email: valentina.vaira@unimi.it Chemicals/CAS: granzyme B; Janus kinase, 161384-16-3; perforin, 119332-27-3; Smad3 protein, 237417-78-6, 237417-96-8, 237418-00-7; CD103 antigen, 269047-90-7; Biomarkers, Tumor; MicroRNAs; Proto-Oncogene Proteins c-mdm2; Proto-Oncogene Proteins c-myc; Smad3 Protein Funding details: 21198 Funding details: GR2011-02348234, GR2011-02351626 Funding text 1: This work was supported by the Italian Minister of Health [grant numbers GR2011-02351626 (to V.V.), GR2011-02348234 (to L.E.)]; and the AIRC 5x1000 [grant number 21198 (to S.P.)]. References: Rubio-Tapia, A., Murray, J.A., Classification and management of refractory coeliac disease (2010) Gut, 59, pp. 547-557. , https://doi.org/10.1136/gut.2009.195131; Cellier, C., Patey, N., Mauvieux, L., Abnormal intestinal intraepithelial lymphocytes in refractory sprue (1998) Gastroenterology, 114, pp. 471-481. , https://doi.org/10.1016/S0016-5085(98)70530-X; Woodward, J., Improving outcomes of refractory celiac disease - Current and emerging treatment strategies (2016) Clin. Exp. Gastroenterol, 9, pp. 225-236. , https://doi.org/10.2147/CEG.S87200; Abadie, V., Jabri, B., IL-15: A central regulator of celiac disease immunopathology (2014) Immunol. Rev., 260, pp. 221-234. , https://doi.org/10.1111/imr.12191; Yokoyama, S., Watanabe, N., Sato, N., Antibody-mediated blockade of IL-15 reverses the autoimmune intestinal damage in transgenic mice that overexpress IL-15 in enterocytes (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 15849-15854. , https://doi.org/10.1073/pnas.0908834106; Yokoyama, S., Perera, P.-Y., Waldmann, T.A., Hiroi, T., Perera, L.P., Tofacitinib, a Janus kinase inhibitor demonstrates efficacy in an IL-15 transgenic mouse model that recapitulates pathologic manifestations of celiac disease (2013) J. Clin. Immunol., 33, pp. 586-594. , https://doi.org/10.1007/s10875-012-9849-y; Vaira, V., Roncoroni, L., Barisani, D., MicroRNA profiles in coeliac patients distinguish different clinical phenotypes and are modulated by gliadin peptides in primary duodenal fibroblasts (2014) Clin. Sci., p. 126. , https://doi.org/10.1042/CS20130248; Laginestra, M.A., Piccaluga, P.P., Fuligni, F., Pathogenetic and diagnostic significance of microRNA deregulation in peripheral T-cell lymphoma not otherwise specified (2014) Blood Cancer J., 4, p. e259. , https://doi.org/10.1038/bcj.2014.78; Swerdlow, S.H., (2019) International Agency for Research on Cancer., , http://publications.iarc.fr/Book-And-Report-Series/Who-Iarc-Classification-Of-Tumours/Who-Classification-Of-Tumours-Of-Haematopoietic-And-Lymphoid-Tissues-2017, and World Health Organization, WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues; Ludvigsson, J.F., Leffler, D.A., Bai, J.C., The Oslo definitions for coeliac disease and related terms (2013) Gut, 62, pp. 43-52. , https://doi.org/10.1136/gutjnl-2011-301346; Al-Toma, A., Volta, U., Auricchio, R., European Society for the Study of Coeliac Disease (ESsCD) guideline for coeliac disease and other gluten-related disorders (2019) United Eur. Gastroenterol. J., 7, pp. 583-613. , https://doi.org/10.1177/2050640619844125; Augello, C., Gianelli, U., Savi, F., MicroRNA as potential biomarker in HCV-associated diffuse large B-cell lymphoma (2014) J. Clin. Pathol., 67, pp. 697-701. , https://doi.org/10.1136/jclinpath-2014-202352; Du, P., Kibbe, W.A., Lin, S.M., Lumi: A pipeline for processing Illumina microarray (2008) Bioinformatics, 24, pp. 1547-1548. , https://doi.org/10.1093/bioinformatics/btn224; Augello, C., Colombo, F., Terrasi, A., Expression of C19MC miRNAs in HCC associates with stem-cell features and the cancer-testis genes signature (2018) Dig. Liver Dis., 50, pp. 583-593. , https://doi.org/10.1016/j.dld.2018.03.026; Terrasi, A., Bertolini, I., Martelli, C., Specific V-ATPase expression sub-classifies IDHwt lower-grade gliomas and impacts glioma growth in vivo (2019) EBioMedicine, 41, pp. 214-224. , https://doi.org/10.1016/j.ebiom.2019.01.052; D{\'i}az-Uriarte, R., Alvarez De Andr{\'e}s, S., Gene selection and classification of microarray data using random forest (2006) BMC Bioinformatics, 7, p. 3. , https://doi.org/10.1186/1471-2105-7-3; Szklarczyk, D., Gable, A.L., Lyon, D., STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets (2019) Nucleic Acids Res., 47, pp. D607-D613. , https://doi.org/10.1093/nar/gky1131; Mogilyansky, E., Rigoutsos, I., The miR-17/92 cluster: A comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease (2013) Cell Death Differ., 20, pp. 1603-1614. , https://doi.org/10.1038/cdd.2013.125; Dal Bo, M., Bomben, R., Hern{\'a}ndez, L., Gattei, V., The MYC/miR-17-92 axis in lymphoproliferative disorders: A common pathway with therapeutic potential (2015) Oncotarget, 6, pp. 19381-19392. , https://doi.org/10.18632/oncotarget.4574; Sin-Chan, P., Mumal, I., Suwal, T., A C19MC-LIN28A-MYCN oncogenic circuit driven by hijacked super-enhancers is a distinct therapeutic vulnerability in ETMRs: A lethal brain tumor (2019) Cancer Cell, 36, pp. 51-51e7. , https://doi.org/10.1016/j.ccell.2019.06.002; Bowman, T., Broome, M.A., Sinibaldi, D., Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis (2001) Proc. Natl. Acad. Sci. U.S.A., 98, pp. 7319-7324. , https://doi.org/10.1073/pnas.131568898; Demaria, M., Misale, S., Giorgi, C., STAT3 can serve as a hit in the process of malignant transformation of primary cells (2012) Cell Death Differ., 19, pp. 1390-1397. , https://doi.org/10.1038/cdd.2012.20; Weisshof, R., Golan, M.A., Yvellez, O.V., Rubin, D.T., The use of tofacitinib in the treatment of inflammatory bowel disease (2018) Immunotherapy, 10, pp. 837-849. , https://doi.org/10.2217/imt-2018-0015; Feng, X., Wang, Z., Fillmore, R., Xi, Y., MiR-200, a new star miRNA in human cancer (2014) Cancer Lett., 344, pp. 166-173. , https://doi.org/10.1016/j.canlet.2013.11.004; Hong, J.P., Li, X.M., Zheng, F.L., VEGF suppresses epithelial-mesenchymal transition by inhibiting the expression of Smad3 and miR-192, a Smad3-dependent microRNA (2013) Int. J. Mol. Med., 31, pp. 1436-1442. , https://doi.org/10.3892/ijmm.2013.1337; Magni, S., Buoli Comani, G., Elli, L., MiRNAs affect the expression of innate and adapative immunity proteins in celiac disease (2014) Am. J. Gastroenterol., 109, pp. 1662-1674. , https://doi.org/10.1038/ajg.2014.203; Mihailovich, M., Bremang, M., Spadotto, V., MiR-17-92 fine-tunes MYC expression and function to ensure optimal B cell lymphoma growth (2015) Nat. Commun., 6, p. 8725. , https://doi.org/10.1038/ncomms9725; Ettersperger, J., Montcuquet, N., Malamut, G., Interleukin-15-dependent T-cell-like innate intraepithelial lymphocytes develop in the intestine and transform into lymphomas in celiac disease (2016) Immunity, 45, pp. 610-625. , https://doi.org/10.1016/j.immuni.2016.07.018; Psathas, J.N., Thomas-Tikhonenko, A., MYC and the art of microRNA maintenance (2014) Cold Spring Harb. Perspect. Med., 4, p. a014175. , https://doi.org/10.1101/cshperspect.a014175",
year = "2020",
doi = "10.1042/CS20200032",
language = "English",
volume = "134",
pages = "1151--1166",
journal = "Clin. Sci.",
issn = "0143-5221",
publisher = "Portland Press Ltd.",
number = "10",
}