Dermal fibroblasts display similar phenotypic and differentiation capacity to fat-derived mesenchymal stem cells, but differ in anti-inflammatory and angiogenic potential

Antonella Blasi, Carmela Martino, Luigi Balducci, Marilisa Saldarelli, Antonio Soleti, Stefania Navone, Laura Canzi, Silvia Cristini, Gloria Invernici, Eugenio Parati, Giulio Alessandri

Research output: Contribution to journalArticle

Abstract

Background: Mesenchymal stem cells (MSCs) are multipotent stem cells able to differentiate into different cell lineages. However, MSCs represent a subpopulation of a more complex cell composition of stroma cells contained in mesenchymal tissue. Due to a lack of specific markers, it is difficult to distinguish MSCs from other more mature stromal cells such as fibroblasts, which, conversely, are abundant in mesenchymal tissue. In order to find more distinguishing features between MSCs and fibroblasts, we studied the phenotypic and functional features of human adipose-derived MSCs (AD-MSCs) side by side with normal human dermal fibroblasts (HNDFs) in vitro. Methods. AD-MSCs and HNDFs were cultured, expanded and phenotypically characterized by flow cytometry (FC). Immunofluorescence was used to investigate cell differentiation. ELISA assay was used to quantify angiogenic factors and chemokines release. Cultures of endothelial cells (ECs) and a monocyte cell line, U937, were used to test angiogenic and anti-inflammatory properties. Results: Cultured AD-MSCs and HNDFs display similar morphological appearance, growth rate, and phenotypic profile. They both expressed typical mesenchymal markers-CD90, CD29, CD44, CD105 and to a minor extent, the adhesion molecules CD54, CD56, CD106 and CD166. They were negative for the stem cell markers CD34, CD146, CD133, CD117. Only aldehyde dehydrogenase (ALDH) was expressed. Neither AD-MSCs nor HNDFs differed in their multi-lineage differentiation capacity; they both differentiated into osteoblast, adipocyte, and also into cardiomyocyte-like cells. In contrast, AD-MSCs, but not HNDFs, displayed strong angiogenic and anti-inflammatory activity. AD-MSCs released significant amounts of VEGF, HGF and Angiopoietins and their conditioned medium (CM) stimulated ECs proliferation and tube formations. In addition, CM-derived AD-MSCs (AD-MSCs-CM) inhibited adhesion molecules expression on U937 and release of RANTES and MCP-1. Finally, after priming with TNF, AD-MSCs enhanced their anti-inflammatory potential; while HNDFs acquired pro-inflammatory activity. Conclusions: AD-MSCs cannot be distinguished from HNDFs in vitro by evaluating their phenotypic profile or differentiation potential, but only through the analysis of their anti-inflammatory and angiogenic properties. These results underline the importance of evaluating the angiogenic and anti-inflammatory features of MSCs preparation. Their priming with inflammatory cytokines prior to transplantation may improve their efficacy in cell-based therapies for tissue regeneration.

Original languageEnglish
Article number5
JournalVascular Cell
Volume3
DOIs
Publication statusPublished - 2011

Fingerprint

Fibroblasts
Oils and fats
Stem cells
Mesenchymal Stromal Cells
Anti-Inflammatory Agents
Fats
Skin
Conditioned Culture Medium
Endothelial cells
Adhesion
Endothelial Cells
Cells
Angiopoietins
Tissue
Multipotent Stem Cells
Chemokine CCL5
Tissue regeneration
Aldehyde Dehydrogenase
Molecules
Flow cytometry

ASJC Scopus subject areas

  • Cell Biology
  • Computer Networks and Communications
  • Neurology
  • Developmental Neuroscience

Cite this

Dermal fibroblasts display similar phenotypic and differentiation capacity to fat-derived mesenchymal stem cells, but differ in anti-inflammatory and angiogenic potential. / Blasi, Antonella; Martino, Carmela; Balducci, Luigi; Saldarelli, Marilisa; Soleti, Antonio; Navone, Stefania; Canzi, Laura; Cristini, Silvia; Invernici, Gloria; Parati, Eugenio; Alessandri, Giulio.

In: Vascular Cell, Vol. 3, 5, 2011.

Research output: Contribution to journalArticle

Blasi, Antonella ; Martino, Carmela ; Balducci, Luigi ; Saldarelli, Marilisa ; Soleti, Antonio ; Navone, Stefania ; Canzi, Laura ; Cristini, Silvia ; Invernici, Gloria ; Parati, Eugenio ; Alessandri, Giulio. / Dermal fibroblasts display similar phenotypic and differentiation capacity to fat-derived mesenchymal stem cells, but differ in anti-inflammatory and angiogenic potential. In: Vascular Cell. 2011 ; Vol. 3.
@article{f7dbdffdb6e84916a0633a7e62360d5a,
title = "Dermal fibroblasts display similar phenotypic and differentiation capacity to fat-derived mesenchymal stem cells, but differ in anti-inflammatory and angiogenic potential",
abstract = "Background: Mesenchymal stem cells (MSCs) are multipotent stem cells able to differentiate into different cell lineages. However, MSCs represent a subpopulation of a more complex cell composition of stroma cells contained in mesenchymal tissue. Due to a lack of specific markers, it is difficult to distinguish MSCs from other more mature stromal cells such as fibroblasts, which, conversely, are abundant in mesenchymal tissue. In order to find more distinguishing features between MSCs and fibroblasts, we studied the phenotypic and functional features of human adipose-derived MSCs (AD-MSCs) side by side with normal human dermal fibroblasts (HNDFs) in vitro. Methods. AD-MSCs and HNDFs were cultured, expanded and phenotypically characterized by flow cytometry (FC). Immunofluorescence was used to investigate cell differentiation. ELISA assay was used to quantify angiogenic factors and chemokines release. Cultures of endothelial cells (ECs) and a monocyte cell line, U937, were used to test angiogenic and anti-inflammatory properties. Results: Cultured AD-MSCs and HNDFs display similar morphological appearance, growth rate, and phenotypic profile. They both expressed typical mesenchymal markers-CD90, CD29, CD44, CD105 and to a minor extent, the adhesion molecules CD54, CD56, CD106 and CD166. They were negative for the stem cell markers CD34, CD146, CD133, CD117. Only aldehyde dehydrogenase (ALDH) was expressed. Neither AD-MSCs nor HNDFs differed in their multi-lineage differentiation capacity; they both differentiated into osteoblast, adipocyte, and also into cardiomyocyte-like cells. In contrast, AD-MSCs, but not HNDFs, displayed strong angiogenic and anti-inflammatory activity. AD-MSCs released significant amounts of VEGF, HGF and Angiopoietins and their conditioned medium (CM) stimulated ECs proliferation and tube formations. In addition, CM-derived AD-MSCs (AD-MSCs-CM) inhibited adhesion molecules expression on U937 and release of RANTES and MCP-1. Finally, after priming with TNF, AD-MSCs enhanced their anti-inflammatory potential; while HNDFs acquired pro-inflammatory activity. Conclusions: AD-MSCs cannot be distinguished from HNDFs in vitro by evaluating their phenotypic profile or differentiation potential, but only through the analysis of their anti-inflammatory and angiogenic properties. These results underline the importance of evaluating the angiogenic and anti-inflammatory features of MSCs preparation. Their priming with inflammatory cytokines prior to transplantation may improve their efficacy in cell-based therapies for tissue regeneration.",
author = "Antonella Blasi and Carmela Martino and Luigi Balducci and Marilisa Saldarelli and Antonio Soleti and Stefania Navone and Laura Canzi and Silvia Cristini and Gloria Invernici and Eugenio Parati and Giulio Alessandri",
year = "2011",
doi = "10.1186/2045-824X-3-5",
language = "English",
volume = "3",
journal = "Vascular Cell",
issn = "2045-824X",
publisher = "BioMed Central",

}

TY - JOUR

T1 - Dermal fibroblasts display similar phenotypic and differentiation capacity to fat-derived mesenchymal stem cells, but differ in anti-inflammatory and angiogenic potential

AU - Blasi, Antonella

AU - Martino, Carmela

AU - Balducci, Luigi

AU - Saldarelli, Marilisa

AU - Soleti, Antonio

AU - Navone, Stefania

AU - Canzi, Laura

AU - Cristini, Silvia

AU - Invernici, Gloria

AU - Parati, Eugenio

AU - Alessandri, Giulio

PY - 2011

Y1 - 2011

N2 - Background: Mesenchymal stem cells (MSCs) are multipotent stem cells able to differentiate into different cell lineages. However, MSCs represent a subpopulation of a more complex cell composition of stroma cells contained in mesenchymal tissue. Due to a lack of specific markers, it is difficult to distinguish MSCs from other more mature stromal cells such as fibroblasts, which, conversely, are abundant in mesenchymal tissue. In order to find more distinguishing features between MSCs and fibroblasts, we studied the phenotypic and functional features of human adipose-derived MSCs (AD-MSCs) side by side with normal human dermal fibroblasts (HNDFs) in vitro. Methods. AD-MSCs and HNDFs were cultured, expanded and phenotypically characterized by flow cytometry (FC). Immunofluorescence was used to investigate cell differentiation. ELISA assay was used to quantify angiogenic factors and chemokines release. Cultures of endothelial cells (ECs) and a monocyte cell line, U937, were used to test angiogenic and anti-inflammatory properties. Results: Cultured AD-MSCs and HNDFs display similar morphological appearance, growth rate, and phenotypic profile. They both expressed typical mesenchymal markers-CD90, CD29, CD44, CD105 and to a minor extent, the adhesion molecules CD54, CD56, CD106 and CD166. They were negative for the stem cell markers CD34, CD146, CD133, CD117. Only aldehyde dehydrogenase (ALDH) was expressed. Neither AD-MSCs nor HNDFs differed in their multi-lineage differentiation capacity; they both differentiated into osteoblast, adipocyte, and also into cardiomyocyte-like cells. In contrast, AD-MSCs, but not HNDFs, displayed strong angiogenic and anti-inflammatory activity. AD-MSCs released significant amounts of VEGF, HGF and Angiopoietins and their conditioned medium (CM) stimulated ECs proliferation and tube formations. In addition, CM-derived AD-MSCs (AD-MSCs-CM) inhibited adhesion molecules expression on U937 and release of RANTES and MCP-1. Finally, after priming with TNF, AD-MSCs enhanced their anti-inflammatory potential; while HNDFs acquired pro-inflammatory activity. Conclusions: AD-MSCs cannot be distinguished from HNDFs in vitro by evaluating their phenotypic profile or differentiation potential, but only through the analysis of their anti-inflammatory and angiogenic properties. These results underline the importance of evaluating the angiogenic and anti-inflammatory features of MSCs preparation. Their priming with inflammatory cytokines prior to transplantation may improve their efficacy in cell-based therapies for tissue regeneration.

AB - Background: Mesenchymal stem cells (MSCs) are multipotent stem cells able to differentiate into different cell lineages. However, MSCs represent a subpopulation of a more complex cell composition of stroma cells contained in mesenchymal tissue. Due to a lack of specific markers, it is difficult to distinguish MSCs from other more mature stromal cells such as fibroblasts, which, conversely, are abundant in mesenchymal tissue. In order to find more distinguishing features between MSCs and fibroblasts, we studied the phenotypic and functional features of human adipose-derived MSCs (AD-MSCs) side by side with normal human dermal fibroblasts (HNDFs) in vitro. Methods. AD-MSCs and HNDFs were cultured, expanded and phenotypically characterized by flow cytometry (FC). Immunofluorescence was used to investigate cell differentiation. ELISA assay was used to quantify angiogenic factors and chemokines release. Cultures of endothelial cells (ECs) and a monocyte cell line, U937, were used to test angiogenic and anti-inflammatory properties. Results: Cultured AD-MSCs and HNDFs display similar morphological appearance, growth rate, and phenotypic profile. They both expressed typical mesenchymal markers-CD90, CD29, CD44, CD105 and to a minor extent, the adhesion molecules CD54, CD56, CD106 and CD166. They were negative for the stem cell markers CD34, CD146, CD133, CD117. Only aldehyde dehydrogenase (ALDH) was expressed. Neither AD-MSCs nor HNDFs differed in their multi-lineage differentiation capacity; they both differentiated into osteoblast, adipocyte, and also into cardiomyocyte-like cells. In contrast, AD-MSCs, but not HNDFs, displayed strong angiogenic and anti-inflammatory activity. AD-MSCs released significant amounts of VEGF, HGF and Angiopoietins and their conditioned medium (CM) stimulated ECs proliferation and tube formations. In addition, CM-derived AD-MSCs (AD-MSCs-CM) inhibited adhesion molecules expression on U937 and release of RANTES and MCP-1. Finally, after priming with TNF, AD-MSCs enhanced their anti-inflammatory potential; while HNDFs acquired pro-inflammatory activity. Conclusions: AD-MSCs cannot be distinguished from HNDFs in vitro by evaluating their phenotypic profile or differentiation potential, but only through the analysis of their anti-inflammatory and angiogenic properties. These results underline the importance of evaluating the angiogenic and anti-inflammatory features of MSCs preparation. Their priming with inflammatory cytokines prior to transplantation may improve their efficacy in cell-based therapies for tissue regeneration.

UR - http://www.scopus.com/inward/record.url?scp=79955595037&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79955595037&partnerID=8YFLogxK

U2 - 10.1186/2045-824X-3-5

DO - 10.1186/2045-824X-3-5

M3 - Article

C2 - 21349162

AN - SCOPUS:79955595037

VL - 3

JO - Vascular Cell

JF - Vascular Cell

SN - 2045-824X

M1 - 5

ER -