Development and function of the mammalian spleen

Andrea Brendolan, Maria Manuela Rosado, Rita Carsetti, Licia Selleri, T. Neil Dear

Research output: Contribution to journalArticlepeer-review

Abstract

The vertebrate spleen has important functions in immunity and haematopoiesis, many of which have been well studied. In contrast, we know much less about the mechanisms governing its early embryonic development. However, as a result of work over the past decade-mostly using knockout mice - significant progress has been made in unravelling the genetic processes governing the spleen's early development. Key genetic regulators, such as Tlx1 and Pbx1, have been identified, and we know some of the early transcriptional hierarchies that control the early patterning and proliferation of the splenic primordium. In mouse and humans, asplenia can arise as a result of laterality defects, or the spleen can be absent with no other discernible abnormalities. Surprisingly, given the spleen's diverse functions, asplenic individuals suffer no major haematopoietic or immune defects apart from a susceptibility to infection with encapsulated bacteria. Recent evidence has shed light on a previously unknown role of the spleen in the development and maintenance of specific B cell populations that are involved in the initial response to infection caused by encapsulated bacteria. The lack of these populations in asplenic mice and humans may go some way to explaining this susceptibility.

Original languageEnglish
Pages (from-to)166-177
Number of pages12
JournalBioEssays
Volume29
Issue number2
DOIs
Publication statusPublished - Feb 2007

ASJC Scopus subject areas

  • Neuroscience (miscellaneous)
  • Biochemistry
  • Cell Biology
  • Biochemistry, Genetics and Molecular Biology(all)
  • Developmental Biology
  • Agricultural and Biological Sciences (miscellaneous)
  • Plant Science

Fingerprint Dive into the research topics of 'Development and function of the mammalian spleen'. Together they form a unique fingerprint.

Cite this