TY - JOUR
T1 - Development of an experimental model for studying bladder carcinogen metabolism using the isolated rat urinary bladder
AU - Airoldi, L.
AU - Bonfanti, M.
AU - Magagnotti, C.
AU - Fanelli, R.
PY - 1987
Y1 - 1987
N2 - The isolated rat urinary bladder was used to study this organ's capacity to metabolize chemical carcinogens. In our experimental conditions, the urinary bladder carcinogen N-nitrosobutyl(4-hydroxybutyl)amine was oxidized to N-nitrosobutyl(3-carboxypropyl)amine. A time-dependent increase was observed in the amount of N-nitrosobutyl(3-carboxypropyl)amine formed and simultaneous disappearance of N-nitrosobutyl(4-hydroxybutyl)amine added, indicating that the bladder can metabolize N-nitrosobutyl(4-hydroxybutyl)amine to the metabolite considered responsible for tumor induction in the urinary bladder of laboratory animals. At 15, 30, 60, and 120 min the percentages of N-nitrosobutyl(3-carboxypropyl)amine formed were 11, 22, 36, and 64%, respectively, and 62, 48, 37, and 26% of N-nitrosobutyl(4-hydroxybutyl)amine remained unchanged. When N-nitrosodibutylamine was introduced into the isolated urinary bladder and incubated for 120 min, its oxidized metabolites N-nitrosobutyl(4-hydroxybutyl)amine and N-nitrosobutyl(3-carboxypropyl)amine were formed, amounting to, respectively, 0.13 and 0.06% of the substrate added. The glucuronide of N-nitrosobutyl(4-hydroxybutyl)amine was incubated in the isolated rat urinary bladder both as a buffer and as a urine solution in order to detect cellular and urinary β-glucuronidase activity. In both systems N-nitrosobutyl(4-hydroxybutyl)amine released was about 1% and 4 h and this percentage did not increase at 6 h. N-Nitrosobutyl(3-carboxypropyl)amine was detectable at 2 h and reached 0.2% of the substrate incubated at 6 h. The results indicate that the urinary bladder may play a role in activating bladder carcinogens.
AB - The isolated rat urinary bladder was used to study this organ's capacity to metabolize chemical carcinogens. In our experimental conditions, the urinary bladder carcinogen N-nitrosobutyl(4-hydroxybutyl)amine was oxidized to N-nitrosobutyl(3-carboxypropyl)amine. A time-dependent increase was observed in the amount of N-nitrosobutyl(3-carboxypropyl)amine formed and simultaneous disappearance of N-nitrosobutyl(4-hydroxybutyl)amine added, indicating that the bladder can metabolize N-nitrosobutyl(4-hydroxybutyl)amine to the metabolite considered responsible for tumor induction in the urinary bladder of laboratory animals. At 15, 30, 60, and 120 min the percentages of N-nitrosobutyl(3-carboxypropyl)amine formed were 11, 22, 36, and 64%, respectively, and 62, 48, 37, and 26% of N-nitrosobutyl(4-hydroxybutyl)amine remained unchanged. When N-nitrosodibutylamine was introduced into the isolated urinary bladder and incubated for 120 min, its oxidized metabolites N-nitrosobutyl(4-hydroxybutyl)amine and N-nitrosobutyl(3-carboxypropyl)amine were formed, amounting to, respectively, 0.13 and 0.06% of the substrate added. The glucuronide of N-nitrosobutyl(4-hydroxybutyl)amine was incubated in the isolated rat urinary bladder both as a buffer and as a urine solution in order to detect cellular and urinary β-glucuronidase activity. In both systems N-nitrosobutyl(4-hydroxybutyl)amine released was about 1% and 4 h and this percentage did not increase at 6 h. N-Nitrosobutyl(3-carboxypropyl)amine was detectable at 2 h and reached 0.2% of the substrate incubated at 6 h. The results indicate that the urinary bladder may play a role in activating bladder carcinogens.
UR - http://www.scopus.com/inward/record.url?scp=0023198653&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0023198653&partnerID=8YFLogxK
M3 - Article
C2 - 3594434
AN - SCOPUS:0023198653
VL - 47
SP - 3697
EP - 3700
JO - Journal of Cancer Research
JF - Journal of Cancer Research
SN - 0008-5472
IS - 14
ER -