Diazepam binding inhibitor (DBI) increases after acute stress in rat

C. Ferrarese, T. Mennini, N. Pecora, C. Pierpaoli, M. Frigo, C. Marzorati, M. Gobbi, A. Bizzi, A. Codegoni, S. Garattini, L. Frattola

Research output: Contribution to journalArticlepeer-review


Diazepam binding inhibitor (DBI) acts in brain by binding to GABA(A)/benzodiazepine receptors (GBR) and to mitochondrial benzodiazepine receptors (MBR). Because DBI acting at MBR, has been shown to be an effector of ACTH-induced steroidogenesis and stress is known to change the level of GBR and MBR, the model of acute noise stress in rats was used to study modifications of DBI and GRB or the content of MBR in various areas of the brain and adrenal gland. It was found that, in the brain of stressed rats, DBI and its processing products (ODN-like immunoreactivity), increased selectively in the hippocampus. This increase in the content of DBI was preceded and followed by a new decrease of GBR and an increase of MBR. Similarly, in adrenal cortex, the content of DBI and MBR increased during the first hour, following acute stress and this increase paralleled the increase in plasma corticosterone. These data suggest that DBI, acting on MBR may regulate steroidogenic function in stress.

Original languageEnglish
Pages (from-to)1445-1452
Number of pages8
Issue number12 B
Publication statusPublished - 1991


  • Benzodiazepines
  • DBI
  • Steroidogenesis
  • Stress

ASJC Scopus subject areas

  • Cellular and Molecular Neuroscience
  • Drug Discovery
  • Pharmacology


Dive into the research topics of 'Diazepam binding inhibitor (DBI) increases after acute stress in rat'. Together they form a unique fingerprint.

Cite this