Differences in DNA damage produced by incorporation of 5-Aza-2'-deoxycytidine or 5,6-dihydro-5-azacytidine into DNA of mammalian cells

J. M. Covey, M. D'Incalci, E. J. Tilchen, D. S. Zaharko, K. W. Kohn

Research output: Contribution to journalArticle

Abstract

The effects of 5-aza-2'-deoxycytidine (aza-dCyd) and 5,6-dihydro-5-azacytidine (H2-aza-Cyd) on the integrity of DNA from several mammalian cell lines were compared using the alkaline elution technique. While both compounds have been shown to inhibit DNA methylation, a direct comparison of their effects on DNA structure has not previously been reported. Exposure of L1210 cells to H2-aza-Cyd (1-100 μg/ml) and simultaneous labeling with [14C]thymidine for 24 h resulted in the production of single-strand breaks in DNA, which were significantly repaired when cells were incubated in drug-free medium for an additional 24 h. This differed from our previous findings for aza-dCyd, confirmed here in parallel experiments, which showed that this compound produces alkali-labile lesions that persist for 48 h. The DNA effects of both drugs were significantly reduced when cells were prelabeled with [14C]thymidine, indicating that production of DNA lesions requires incorporation of the anomalous base. Studies utilizing pulse-labeled DNA indicated that aza-dCyd has little effect on the rate of DNA elongation, whereas H2-aza-Cyd produced a complete inhibition for at least 6 h after drug removal. The contrasting pattern of DNA damage induced by these compounds in L1210 was also observed in two human lymphoblastoid cell lines, one of which was derived from a patient with xeroderma pigmentosum. We had previously concluded that alkali-labile sites in DNA from aza-dCyd-treated cells probably arise due to the chemical instability of aza-dCyd. In contrast, incorporated H2-aza-Cyd is chemically stable. The single-strand breaks produced in H2-aza-Cyd treated cells were not of the alkali-labile type, and may represent an accumulation of DNA replication fragments and/or intermediates in an excision repair process. Thus, the DNA lesions produced by the two drugs have markedly different characteristics, and H2-aza-Cyd should not be considered to be merely a stable pharmacological congener of aza-dCyd.

Original languageEnglish
Pages (from-to)5511-5517
Number of pages7
JournalCancer Research
Volume46
Issue number11
Publication statusPublished - 1986

Fingerprint

decitabine
5,6-dihydro-5-azacytidine
DNA Damage
DNA
Alkalies
Pharmaceutical Preparations
Thymidine
Single-Stranded DNA Breaks
Cell Line
Xeroderma Pigmentosum
DNA Methylation
DNA Replication
DNA Repair

ASJC Scopus subject areas

  • Cancer Research
  • Oncology

Cite this

Differences in DNA damage produced by incorporation of 5-Aza-2'-deoxycytidine or 5,6-dihydro-5-azacytidine into DNA of mammalian cells. / Covey, J. M.; D'Incalci, M.; Tilchen, E. J.; Zaharko, D. S.; Kohn, K. W.

In: Cancer Research, Vol. 46, No. 11, 1986, p. 5511-5517.

Research output: Contribution to journalArticle

@article{413f331166594527b65fc41c29d74bd8,
title = "Differences in DNA damage produced by incorporation of 5-Aza-2'-deoxycytidine or 5,6-dihydro-5-azacytidine into DNA of mammalian cells",
abstract = "The effects of 5-aza-2'-deoxycytidine (aza-dCyd) and 5,6-dihydro-5-azacytidine (H2-aza-Cyd) on the integrity of DNA from several mammalian cell lines were compared using the alkaline elution technique. While both compounds have been shown to inhibit DNA methylation, a direct comparison of their effects on DNA structure has not previously been reported. Exposure of L1210 cells to H2-aza-Cyd (1-100 μg/ml) and simultaneous labeling with [14C]thymidine for 24 h resulted in the production of single-strand breaks in DNA, which were significantly repaired when cells were incubated in drug-free medium for an additional 24 h. This differed from our previous findings for aza-dCyd, confirmed here in parallel experiments, which showed that this compound produces alkali-labile lesions that persist for 48 h. The DNA effects of both drugs were significantly reduced when cells were prelabeled with [14C]thymidine, indicating that production of DNA lesions requires incorporation of the anomalous base. Studies utilizing pulse-labeled DNA indicated that aza-dCyd has little effect on the rate of DNA elongation, whereas H2-aza-Cyd produced a complete inhibition for at least 6 h after drug removal. The contrasting pattern of DNA damage induced by these compounds in L1210 was also observed in two human lymphoblastoid cell lines, one of which was derived from a patient with xeroderma pigmentosum. We had previously concluded that alkali-labile sites in DNA from aza-dCyd-treated cells probably arise due to the chemical instability of aza-dCyd. In contrast, incorporated H2-aza-Cyd is chemically stable. The single-strand breaks produced in H2-aza-Cyd treated cells were not of the alkali-labile type, and may represent an accumulation of DNA replication fragments and/or intermediates in an excision repair process. Thus, the DNA lesions produced by the two drugs have markedly different characteristics, and H2-aza-Cyd should not be considered to be merely a stable pharmacological congener of aza-dCyd.",
author = "Covey, {J. M.} and M. D'Incalci and Tilchen, {E. J.} and Zaharko, {D. S.} and Kohn, {K. W.}",
year = "1986",
language = "English",
volume = "46",
pages = "5511--5517",
journal = "Journal of Cancer Research",
issn = "0008-5472",
publisher = "American Association for Cancer Research Inc.",
number = "11",

}

TY - JOUR

T1 - Differences in DNA damage produced by incorporation of 5-Aza-2'-deoxycytidine or 5,6-dihydro-5-azacytidine into DNA of mammalian cells

AU - Covey, J. M.

AU - D'Incalci, M.

AU - Tilchen, E. J.

AU - Zaharko, D. S.

AU - Kohn, K. W.

PY - 1986

Y1 - 1986

N2 - The effects of 5-aza-2'-deoxycytidine (aza-dCyd) and 5,6-dihydro-5-azacytidine (H2-aza-Cyd) on the integrity of DNA from several mammalian cell lines were compared using the alkaline elution technique. While both compounds have been shown to inhibit DNA methylation, a direct comparison of their effects on DNA structure has not previously been reported. Exposure of L1210 cells to H2-aza-Cyd (1-100 μg/ml) and simultaneous labeling with [14C]thymidine for 24 h resulted in the production of single-strand breaks in DNA, which were significantly repaired when cells were incubated in drug-free medium for an additional 24 h. This differed from our previous findings for aza-dCyd, confirmed here in parallel experiments, which showed that this compound produces alkali-labile lesions that persist for 48 h. The DNA effects of both drugs were significantly reduced when cells were prelabeled with [14C]thymidine, indicating that production of DNA lesions requires incorporation of the anomalous base. Studies utilizing pulse-labeled DNA indicated that aza-dCyd has little effect on the rate of DNA elongation, whereas H2-aza-Cyd produced a complete inhibition for at least 6 h after drug removal. The contrasting pattern of DNA damage induced by these compounds in L1210 was also observed in two human lymphoblastoid cell lines, one of which was derived from a patient with xeroderma pigmentosum. We had previously concluded that alkali-labile sites in DNA from aza-dCyd-treated cells probably arise due to the chemical instability of aza-dCyd. In contrast, incorporated H2-aza-Cyd is chemically stable. The single-strand breaks produced in H2-aza-Cyd treated cells were not of the alkali-labile type, and may represent an accumulation of DNA replication fragments and/or intermediates in an excision repair process. Thus, the DNA lesions produced by the two drugs have markedly different characteristics, and H2-aza-Cyd should not be considered to be merely a stable pharmacological congener of aza-dCyd.

AB - The effects of 5-aza-2'-deoxycytidine (aza-dCyd) and 5,6-dihydro-5-azacytidine (H2-aza-Cyd) on the integrity of DNA from several mammalian cell lines were compared using the alkaline elution technique. While both compounds have been shown to inhibit DNA methylation, a direct comparison of their effects on DNA structure has not previously been reported. Exposure of L1210 cells to H2-aza-Cyd (1-100 μg/ml) and simultaneous labeling with [14C]thymidine for 24 h resulted in the production of single-strand breaks in DNA, which were significantly repaired when cells were incubated in drug-free medium for an additional 24 h. This differed from our previous findings for aza-dCyd, confirmed here in parallel experiments, which showed that this compound produces alkali-labile lesions that persist for 48 h. The DNA effects of both drugs were significantly reduced when cells were prelabeled with [14C]thymidine, indicating that production of DNA lesions requires incorporation of the anomalous base. Studies utilizing pulse-labeled DNA indicated that aza-dCyd has little effect on the rate of DNA elongation, whereas H2-aza-Cyd produced a complete inhibition for at least 6 h after drug removal. The contrasting pattern of DNA damage induced by these compounds in L1210 was also observed in two human lymphoblastoid cell lines, one of which was derived from a patient with xeroderma pigmentosum. We had previously concluded that alkali-labile sites in DNA from aza-dCyd-treated cells probably arise due to the chemical instability of aza-dCyd. In contrast, incorporated H2-aza-Cyd is chemically stable. The single-strand breaks produced in H2-aza-Cyd treated cells were not of the alkali-labile type, and may represent an accumulation of DNA replication fragments and/or intermediates in an excision repair process. Thus, the DNA lesions produced by the two drugs have markedly different characteristics, and H2-aza-Cyd should not be considered to be merely a stable pharmacological congener of aza-dCyd.

UR - http://www.scopus.com/inward/record.url?scp=0023035969&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023035969&partnerID=8YFLogxK

M3 - Article

C2 - 2428479

AN - SCOPUS:0023035969

VL - 46

SP - 5511

EP - 5517

JO - Journal of Cancer Research

JF - Journal of Cancer Research

SN - 0008-5472

IS - 11

ER -