Abstract
DISNOR is a new resource that aims at exploiting the explosion of data on the identification of disease-associated genes to assemble inferred disease pathways. This may help dissecting the signaling events whose disruption causes the pathological phenotypes and may contribute to build a platform for precision medicine. To this end we combine the gene-disease association (GDA) data annotated in the DisGeNET resource with a new curation effort aimed at populating the SIGNOR database with causal interactions related to disease genes with the highest possible coverage. DISNOR can be freely accessed at http://DISNOR.uniroma2.it/ where >3700 disease-networks, linking 1/42600 disease genes, can be explored. For each disease curated in DisGeNET, DISNOR links disease genes by manually annotated causal relationships and offers an intuitive visualization of the inferred 'patho-pathways' at different complexity levels. User-defined gene lists are also accepted in the query pipeline. In addition, for each list of query genes - either annotated in DisGeNET or user-defined - DISNOR performs a gene set enrichment analysis on KEGG-defined pathways or on the lists of proteins associated with the inferred disease pathways. This function offers additional information on disease-associated cellular pathways and disease similarity.
Original language | English |
---|---|
Pages (from-to) | D527-D534 |
Journal | Nucleic Acids Research |
Volume | 46 |
Issue number | D1 |
DOIs | |
Publication status | E-pub ahead of print - Oct 3 2017 |
ASJC Scopus subject areas
- Genetics