Disruptive variants of CSDE1 associate with autism and interfere with neuronal development and synaptic transmission

Hui Guo, Ying Li, Lu Shen, Tianyun Wang, Xiangbin Jia, Lijuan Liu, Tao Xu, Mengzhu Ou, Kendra Hoekzema, Huidan Wu, Madelyn A. Gillentine, Cenying Liu, Hailun Ni, Pengwei Peng, Rongjuan Zhao, Yu Zhang, Chanika Phornphutkul, Alexander P.A. Stegmann, Carlos E. Prada, Robert J. HopkinJoseph T. Shieh, Kirsty McWalter, Kristin G. Monaghan, Peter M. van Hasselt, Koen van Gassen, Ting Bai, Min Long, Lin Han, Yingting Quan, Meilin Chen, Yaowen Zhang, Kuokuo Li, Qiumeng Zhang, Jieqiong Tan, Tengfei Zhu, Yaning Liu, Nan Pang, Jing Peng, Daryl A. Scott, Seema R. Lalani, Mahshid Azamian, Grazia M.S. Mancini, Darius J. Adams, Malin Kvarnung, Anna Lindstrand, Ann Nordgren, Jonathan Pevsner, Corrado Romano, Giuseppe Calabrese, Ornella Galesi

Research output: Contribution to journalArticle

Abstract

RNA binding proteins are key players in posttranscriptional regulation and have been implicated in neurodevelopmental and neuropsychiatric disorders. Here, we report a significant burden of heterozygous, likely genedisrupting variants in CSDE1 (encoding a highly constrained RNA binding protein) among patients with autism and related neurodevelopmental disabilities. Analysis of 17 patients identifies common phenotypes including autism, intellectual disability, language and motor delay, seizures, macrocephaly, and variable ocular abnormalities. HITSCLIP revealed that Csde1binding targets are enriched in autismassociated gene sets, especially FMRP targets, and in neuronal development and synaptic plasticity–related pathways. Csde1 knockdown in primary mouse cortical neurons leads to an overgrowth of the neurites and abnormal dendritic spine morphology/synapse formation and impaired synaptic transmission, whereas mutant and knockdown experiments in Drosophila result in defects in synapse growth and synaptic transmission. Our study defines a new autismrelated syndrome and highlights the functional role of CSDE1 in synapse development and synaptic transmission.

Original languageEnglish
Article numbereaax2166
JournalScience Advances
Volume5
Issue number9
DOIs
Publication statusPublished - Sep 25 2019

    Fingerprint

ASJC Scopus subject areas

  • General
  • Physics and Astronomy (miscellaneous)

Cite this

Guo, H., Li, Y., Shen, L., Wang, T., Jia, X., Liu, L., Xu, T., Ou, M., Hoekzema, K., Wu, H., Gillentine, M. A., Liu, C., Ni, H., Peng, P., Zhao, R., Zhang, Y., Phornphutkul, C., Stegmann, A. P. A., Prada, C. E., ... Galesi, O. (2019). Disruptive variants of CSDE1 associate with autism and interfere with neuronal development and synaptic transmission. Science Advances, 5(9), [eaax2166]. https://doi.org/10.1126/sciadv.aax2166