Dissimilarity-based detection of schizophrenia

Aydin Ulaş, Robert P W Duin, Umberto Castellani, Marco Loog, Pasquale Mirtuono, Manuele Bicego, Vittorio Murino, Marcella Bellani, Stefania Cerruti, Michele Tansella, Paolo Brambilla

Research output: Contribution to journalArticlepeer-review

Abstract

In this article, a novel approach to schizophrenia classification using magnetic resonance images (MRI) is proposed. The presented method is based on dissimilarity-based classification techniques applied to morphological MRIs and diffusion-weighted images (DWI). Instead of working with features directly, pairwise dissimilarities between expert delineated regions of interest (ROIs) are considered as representations based on which learning and classification can be performed. Experiments are carried out on a set of 59 patients and 55 controls and several pairwise dissimilarity measurements are analyzed. We demonstrate that significant improvements can be obtained when combining over different ROIs and different dissimilarity measures. We show that combining ROIs using the dissimilarity-based representation, we achieve higher accuracies. The dissimilarity-based representation outperforms the feature-based representation in all cases. Best results are obtained by combining the two modalities. In summary, our contribution is threefold: (i) We introduce the usage of dissimilarity-based classification to schizophrenia detection and show that dissimilarity-based classification achieves better results than normal features, (ii) We use dissimilarity combination to achieve better accuracies when carefully selected ROIs and dissimilarity measures are considered, and (iii) We show that by combining multiple modalities we can achieve even better results.

Original languageEnglish
Pages (from-to)179-192
Number of pages14
JournalInternational Journal of Imaging Systems and Technology
Volume21
Issue number2
DOIs
Publication statusPublished - Jun 2011

Keywords

  • diffusion-weighted imaging
  • dissimilarity-based classification
  • schizophrenia detection
  • structural MRI

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Electronic, Optical and Magnetic Materials
  • Computer Vision and Pattern Recognition
  • Software

Fingerprint Dive into the research topics of 'Dissimilarity-based detection of schizophrenia'. Together they form a unique fingerprint.

Cite this