TY - JOUR
T1 - Distinct modulation of human myeloid and plasmacytoid dendritic cells by anandamide in multiple sclerosis
AU - Chiurchiù, Valerio
AU - Cencioni, Maria Teresa
AU - Bisicchia, Elisa
AU - De Bardi, Marco
AU - Gasperini, Claudio
AU - Borsellino, Giovanna
AU - Centonze, Diego
AU - Battistini, Luca
AU - Maccarrone, Mauro
PY - 2013/5
Y1 - 2013/5
N2 - Objective The immunopathogenesis of multiple sclerosis (MS) has always been thought to be driven by chronically activated and autoreactive Th-1 and Th-17 cells. Recently, dendritic cells (DCs) have also been thought to significantly contribute to antigenic spread and to maturation of adaptive immunity, and have been linked with disease progression and exacerbation. However, the role of DCs in MS pathogenesis remains poorly understood. Methods We compared the level of cytokine production by myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) in healthy subjects and MS patients, following in vitro stimulation of Toll-like receptors 7/8. We also evaluated the effect of the main endocannabinoid, anandamide (AEA), in these DC subsets and correlated cytokine levels with defects in the endocannabinoid system. Results mDCs obtained from MS patients produce higher levels of interleukin-12 and interleukin-6, whereas pDCs account for lower levels of interferon-α compared to healthy subjects. AEA significantly inhibited cytokine production from healthy mDCs and pDCs, as well as their ability to induce Th-1 and Th-17 lineages. Moreover, we found that in MS only pDCs lack responsiveness to cytokine inhibition induced by AEA. Consistently, this specific cell subset expresses higher levels of the anandamide hydrolase fatty acid amide hydrolase (FAAH). Interpretation Our data disclose a distinct immunomodulatory effect of AEA in mDCs and pDCs from MS patients, which may reflect an alteration of the expression of FAAH, thus forming the basis for the rational design of new endocannabinoid-based immunotherapeutic agents targeting a specific cell subset. Ann Neurol 2013;73:626-636
AB - Objective The immunopathogenesis of multiple sclerosis (MS) has always been thought to be driven by chronically activated and autoreactive Th-1 and Th-17 cells. Recently, dendritic cells (DCs) have also been thought to significantly contribute to antigenic spread and to maturation of adaptive immunity, and have been linked with disease progression and exacerbation. However, the role of DCs in MS pathogenesis remains poorly understood. Methods We compared the level of cytokine production by myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) in healthy subjects and MS patients, following in vitro stimulation of Toll-like receptors 7/8. We also evaluated the effect of the main endocannabinoid, anandamide (AEA), in these DC subsets and correlated cytokine levels with defects in the endocannabinoid system. Results mDCs obtained from MS patients produce higher levels of interleukin-12 and interleukin-6, whereas pDCs account for lower levels of interferon-α compared to healthy subjects. AEA significantly inhibited cytokine production from healthy mDCs and pDCs, as well as their ability to induce Th-1 and Th-17 lineages. Moreover, we found that in MS only pDCs lack responsiveness to cytokine inhibition induced by AEA. Consistently, this specific cell subset expresses higher levels of the anandamide hydrolase fatty acid amide hydrolase (FAAH). Interpretation Our data disclose a distinct immunomodulatory effect of AEA in mDCs and pDCs from MS patients, which may reflect an alteration of the expression of FAAH, thus forming the basis for the rational design of new endocannabinoid-based immunotherapeutic agents targeting a specific cell subset. Ann Neurol 2013;73:626-636
UR - http://www.scopus.com/inward/record.url?scp=84878320781&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84878320781&partnerID=8YFLogxK
U2 - 10.1002/ana.23875
DO - 10.1002/ana.23875
M3 - Article
C2 - 23447381
AN - SCOPUS:84878320781
VL - 73
SP - 626
EP - 636
JO - Annals of Neurology
JF - Annals of Neurology
SN - 0364-5134
IS - 5
ER -