Disulfide-containing high mobility group box-1 promotes N-methyl-d-aspartate receptor function and excitotoxicity by activating toll-like receptor 4-dependent signaling in hippocampal neurons

Research output: Contribution to journalArticle

Abstract

Aims: Using primary cultures of mouse hippocampal neurons, we studied the molecular and functional interactions between high mobility group box-1 (HMGB1) and the N-methyl-d-aspartate receptor (NMDAR), two proteins playing a key role in neuronal hyperexcitability. By measuring NMDA-induced calcium (Ca2+) increase in neuronal somata and neurotoxicity as functional read-out parameters, we explored the role of the redox state of HMGB1, the receptor involved, and the molecular signaling underlying its interactions with postsynaptic NMDAR. We also investigated whether HMGB1 redox state affects its proconvulsive effects in mice. Results: Nonoxidizable HMGB1 with a triple cysteine-to-serine replacement (3S-HMGB1) was ineffective on NMDA response. Conversely, the disulfide-containing form of HMGB1 dose dependently enhanced NMDA-induced Ca2+ increase in neuronal cell bodies. This effect was prevented by BoxA, a competitive HMGB1 antagonist, and by Rhodobacter sphaeroides lipopolysaccharide (LPS-RS), a toll-like receptor 4 (TLR4) selective antagonist, and it was abrogated in neurons lacking TLR4 while persisting in the absence of receptor for advanced glycation end products (RAGE). TLR4 and NMDAR subunit 1 (NR1) and 2B (NR2B) were colocalized in neurons. Disulfide HMGB1 effect on NMDA-induced Ca2+ influx was prevented by 3-O-methylsphingomyelin (3-O-MS) and 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo [3,4-d] pyrimidine, (PP2) selective inhibitors of neutral sphingomyelinase and Src-family Tyr kinases, respectively. Disulfide HMGB1, but not 3S-HMGB1, increased Tyr1472 phosphorylation of the NR2B subunit of the NMDAR, which is known to increase Ca2+ channel permeability. Similarly, disulfide HMGB1 increased NMDA-induced neuronal cell death in vitro and enhanced kainate-induced seizures in vivo. Innovation and Conclusion: We describe a novel molecular neuronal pathway activated by HMGB1 that could be targeted in vivo to prevent neurodegeneration and seizures mediated by excessive NMDARs stimulation. Antioxid. Redox Signal. 21, 1726-1740.

Original languageEnglish
Pages (from-to)1726-1740
Number of pages15
JournalAntioxidants and Redox Signaling
Volume21
Issue number12
DOIs
Publication statusPublished - Oct 20 2014

    Fingerprint

ASJC Scopus subject areas

  • Biochemistry
  • Cell Biology
  • Molecular Biology
  • Physiology
  • Clinical Biochemistry
  • Medicine(all)

Cite this