DNA damage and sequence specificity of DNA binding of the new anti-cancer agent 1,4-bis(2'-chloroethyl)-1,4-diazabicyclo-[2.2.1] heptane dimaleate (Dabis maleate)

M. Broggini, J. A. Hartley, W. B. Mattes, M. Ponti, K. W. Kohn, M. D'Incalci

Research output: Contribution to journalArticle

Abstract

The DNA damage and the sequence of specificity of guanine-N7 alkylation produced by the novel, positively charged, antineoplastic agent 1,4-bis(2'-chloroethyl)-1,4-diazabicyclo-[2.2.1] heptane dimaleate (Dabis maleate) and its uncharged tertiary amine analogue 1,4-bis(2'-chloroethyl)-1,4-diazacyclohexane (Dabis analogue) were investigated in L1210 cells and isolated DNA. Both compounds are cytotoxic in vitro causing an arrest of L1210 cells in G2/M phase of the cell cycle. In isolated DNA, Dabis maleate alkylates guanine at the N7-position with some differences in specificity compared to other alkylating agents (e.g. nitrogen mustard). Significant differences are also evident between Dabis maleate and Dabis analogue, suggesting that Dabis analogue is not the sole alkylating species of Dabis maleate. Using the alkaline elution technique a moderate number of DNA interstrand cross-links were detected in L1210 cells treated with both compounds, which were completely repaired within 24 h. Dabis maleate and Dabis analogue do not cause DNA single strand breaks or DNA protein cross-links at the doses at which DNA interstrand cross-links were detected.

Original languageEnglish
Pages (from-to)285-289
Number of pages5
JournalBritish Journal of Cancer
Volume61
Issue number2
Publication statusPublished - 1990

ASJC Scopus subject areas

  • Cancer Research
  • Oncology

Fingerprint Dive into the research topics of 'DNA damage and sequence specificity of DNA binding of the new anti-cancer agent 1,4-bis(2'-chloroethyl)-1,4-diazabicyclo-[2.2.1] heptane dimaleate (Dabis maleate)'. Together they form a unique fingerprint.

  • Cite this