Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin

Elena Ziviani, Ran N. Tao, Alexander J. Whitworth

Research output: Contribution to journalArticlepeer-review

Abstract

Loss of the E3 ubiquitin ligase Parkin causes early onset Parkinson's disease, a neurodegenerative disorder of unknown etiology. Parkin has been linked to multiple cellular processes including protein degradation, mitochondrial homeostasis, and autophagy; however, its precise role in pathogenesis is unclear. Recent evidence suggests that Parkin is recruited to damaged mitochondria, possibly affecting mitochondrial fission and/or fusion, to mediate their autophagic turnover. The precise mechanism of recruitment and the ubiquitination target are unclear. Here we show in Drosophila cells that PINK1 is required to recruit Parkin to dysfunctional mitochondria and promote their degradation. Furthermore, PINK1 and Parkin mediate the ubiquitination of the profusion factor Mfn on the outer surface of mitochondria. Loss of Drosophila PINK1 or parkin causes an increase in Mfn abundance in vivo and concomitant elongation of mitochondria. These findings provide a molecular mechanism by which the PINK1/Parkin pathway affects mitochondrial fission/fusion as suggested by previous genetic interaction studies. We hypothesize that Mfn ubiquitination may provide a mechanism by which terminally damaged mitochondria are labeled and sequestered for degradation by autophagy.

Original languageEnglish
Pages (from-to)5018-5023
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume107
Issue number11
DOIs
Publication statusPublished - Mar 16 2010

Keywords

  • Mitophagy
  • Neurodegeneration
  • Parkinson's disease
  • Quality control

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin'. Together they form a unique fingerprint.

Cite this