Drug addiction as a disorder of associative learning. Role of nucleus accumbens shell/extended amygdala dopamine

G. Di Chiara, G. Tanda, V. Bassareo, F. Pontieri, E. Acquas, S. Fenu, C. Cadoni, E. Carboni

Research output: Contribution to journalArticle

Abstract

Conventional reinforcers phasically stimulate dopamine transmission in the nucleus accumbens shell. This property undergoes one-trial habituation consistent with a role of nucleus accumbens shell dopamine in associative learning. Experimental studies with place- and taste-conditioning paradigms confirm this role. Addictive drugs share with conventional reinforcers the property of stimulating dopamine transmission in the nucleus accumbens shell. This response, however, undergoes one-trial habituation in the case of conventional reinforcers but not of drugs. Resistance to habituation allows drugs to repetitively activate dopamine transmission in the shell upon repeated self-administration. This process abnormally facilitates associative learning, leading to the attribution of excessive motivational value to discrete stimuli or contexts predictive of drug availability. Addiction is therefore the expression of the excessive control over behavior acquired by drug-related stimuli as a result of abnormal strenghtening of stimulus-drug contingencies by nondecremental drug-induced stimulation of dopamine transmission in the nucleus accumbens shell.

Original languageEnglish
Pages (from-to)461-485
Number of pages25
JournalAnnals of the New York Academy of Sciences
Volume877
DOIs
Publication statusPublished - 1999

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint Dive into the research topics of 'Drug addiction as a disorder of associative learning. Role of nucleus accumbens shell/extended amygdala dopamine'. Together they form a unique fingerprint.

  • Cite this