Abstract
Original language | English |
---|---|
Journal | Journal of Experimental and Clinical Cancer Research |
Volume | 36 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2017 |
Keywords
- Cancer treatment
- Drug repositioning
- Drug repurposing
- Glioblastoma multiforme
- High-throughput technologies
- Signal transduction, Energy metabolism
- aprepitant
- auranofin
- captopril
- celecoxib
- chloroquine
- chlorpromazine
- copper
- disulfiram
- epidermal growth factor receptor
- gluconate copper
- itraconazole
- lonidamine
- mefloquine
- memantine
- metformin
- minocycline
- phosphatidylinositol 3 kinase
- rapamycin
- ritonavir
- sertraline
- temozolomide
- cancer prognosis
- cancer therapy
- computer model
- drug repositioning
- genomics
- glioblastoma
- human
- mass spectrometry
- molecular mechanics
- nonhuman
- nuclear magnetic resonance spectroscopy
- priority journal
- protein microarray
- proteomics
- Review
- treatment outcome
Fingerprint Dive into the research topics of 'Drug repurposing for the treatment of glioblastoma multiforme'. Together they form a unique fingerprint.
Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Drug repurposing for the treatment of glioblastoma multiforme. / Abbruzzese, C.; Matteoni, S.; Signore, M.; Cardone, L.; Nath, K.; Glickson, J.D.; Paggi, M.G.
In: Journal of Experimental and Clinical Cancer Research, Vol. 36, No. 1, 2017.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Drug repurposing for the treatment of glioblastoma multiforme
AU - Abbruzzese, C.
AU - Matteoni, S.
AU - Signore, M.
AU - Cardone, L.
AU - Nath, K.
AU - Glickson, J.D.
AU - Paggi, M.G.
N1 - Export Date: 5 April 2018 CODEN: JECRD Correspondence Address: Paggi, M.G.; Department of Research, Advanced Diagnostics and Technological Innovation, Unit of Cellular Networks and Therapeutic Targets, Proteomics Area, Regina Elena National Cancer Institute, IRCCS, Via Elio Chianesi, 53, Italy; email: marco.paggi@ifo.gov.it Chemicals/CAS: aprepitant, 170729-80-3, 221350-96-5; auranofin, 34031-32-8; captopril, 62571-86-2; celecoxib, 169590-42-5; chloroquine, 132-73-0, 3545-67-3, 50-63-5, 54-05-7; chlorpromazine, 50-53-3, 69-09-0; copper, 15158-11-9, 7440-50-8; disulfiram, 97-77-8; epidermal growth factor receptor, 79079-06-4; gluconate copper, 13005-35-1; itraconazole, 84625-61-6; lonidamine, 50264-69-2; mefloquine, 51773-92-3, 53230-10-7; memantine, 19982-08-2, 41100-52-1, 51052-62-1; metformin, 1115-70-4, 657-24-9; minocycline, 10118-90-8, 11006-27-2, 13614-98-7; phosphatidylinositol 3 kinase, 115926-52-8; rapamycin, 53123-88-9; ritonavir, 155213-67-5; sertraline, 79617-96-2; temozolomide, 85622-93-1 References: Stupp, R., Mason, W.P., Van Den Bent, M.J., Weller, M., Fisher, B., Taphoorn, M.J., Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma (2005) N Engl J Med, 352 (10), pp. 987-996. , 10.1056/NEJMoa043330 1:CAS:528:DC%2BD2MXit1Wksbk%3D 15758009; Cloughesy, T.F., Cavenee, W.K., Mischel, P.S., Glioblastoma: From molecular pathology to targeted treatment (2014) Annu Rev Pathol, 9, pp. 1-25. , 10.1146/annurev-pathol-011110-130324. 1:CAS:528:DC%2BC2cXlt1emsLc%3D 23937436; Brennan, C.W., Verhaak, R.G., McKenna, A., Campos, B., Noushmehr, H., Salama, S.R., The somatic genomic landscape of glioblastoma (2013) Cell, 155 (2), pp. 462-477. , 10.1016/j.cell.2013.09.034 1:CAS:528:DC%2BC3sXhs1Srtb7J 24120142 3910500; Ashburn, T.T., Thor, K.B., Drug repositioning: Identifying and developing new uses for existing drugs (2004) Nat Rev Drug Discov, 3 (8), pp. 673-683. , 10.1038/nrd1468 1:CAS:528:DC%2BD2cXmtVOhtL8%3D 15286734; Nosengo, N., Can you teach old drugs new tricks? (2016) Nature, 534 (7607), pp. 314-316. , 10.1038/534314a 27306171; Zappacosta, A.R., Reversal of baldness in patient receiving minoxidil for hypertension (1980) N Engl J Med, 303 (25), pp. 1480-1481. , 1:STN:280:DyaL3M%2Flt1WktA%3D%3D 7432414; Galie, N., Ghofrani, H.A., Torbicki, A., Barst, R.J., Rubin, L.J., Badesch, D., Sildenafil citrate therapy for pulmonary arterial hypertension (2005) N Engl J Med, 353 (20), pp. 2148-2157. , 10.1056/NEJMoa050010 1:CAS:528:DC%2BD2MXht1ajtb%2FI 16291984; Goldstein, I., Lue, T.F., Padma-Nathan, H., Rosen, R.C., Steers, W.D., Wicker, P.A., Oral sildenafil in the treatment of erectile dysfunction. Sildenafil study group (1998) N Engl J Med, 338 (20), pp. 1397-1404. , 10.1056/NEJM199805143382001. 1:CAS:528:DyaK1cXjsVWitbs%3D 9580646; Singhal, S., Mehta, J., Desikan, R., Ayers, D., Roberson, P., Eddlemon, P., Antitumor activity of thalidomide in refractory multiple myeloma (1999) N Engl J Med, 341 (21), pp. 1565-1571. , 10.1056/NEJM199911183412102 1:CAS:528:DyaK1MXotVSgs78%3D 10564685; Furman, P.A., Fyfe, J.A., St Clair, M.H., Weinhold, K., Rideout, J.L., Freeman, G.A., Phosphorylation of 3′-azido-3′-deoxythymidine and selective interaction of the 5′-triphosphate with human immunodeficiency virus reverse transcriptase (1986) Proc Natl Acad Sci U S A, 83 (21), pp. 8333-8337. , 1:CAS:528:DyaL2sXktlCqug%3D%3D 2430286 386922; Foote, M.B., Papadopoulos, N., Diaz, L.A., Jr., Genetic classification of gliomas: Refining histopathology (2015) Cancer Cell, 28 (1), pp. 9-11. , 10.1016/j.ccell.2015.06.014 1:CAS:528:DC%2BC2MXht1GrtL7I 26175411; Frattini, V., Trifonov, V., Chan, J.M., Castano, A., Lia, M., Abate, F., The integrated landscape of driver genomic alterations in glioblastoma (2013) Nat Genet, 45 (10), pp. 1141-1149. , 10.1038/ng.2734 1:CAS:528:DC%2BC3sXht1Wrt7zF 23917401 3799953; Ludwig, K., Kornblum, H.I., Molecular markers in glioma (2017) J Neuro-Oncol; Rohle, D., Popovici-Muller, J., Palaskas, N., Turcan, S., Grommes, C., Campos, C., An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells (2013) Science, 340 (6132), pp. 626-630. , 10.1126/science.1236062 1:CAS:528:DC%2BC3sXmslWksbg%3D 23558169 3985613; Di Stefano, A.L., Fucci, A., Frattini, V., Labussiere, M., Mokhtari, K., Zoppoli, P., Detection, characterization, and inhibition of FGFR-TACC fusions in IDH wild-type glioma (2015) Clin Cancer Res, 21 (14), pp. 3307-3317. , 10.1158/1078-0432.CCR-14-2199 1:CAS:528:DC%2BC2MXht1SrsLbJ 25609060 4506218; Zhang, Y., Kwok-Shing Ng, P., Kucherlapati, M., Chen, F., Liu, Y., Tsang, Y.H., A pan-cancer Proteogenomic atlas of PI3K/AKT/mTOR pathway alterations (2017) Cancer Cell, 31 (6), pp. 820-832. , 10.1016/j.ccell.2017.04.013 1:CAS:528:DC%2BC2sXotVCntLw%3D 28528867 e3; Lerner, R.G., Grossauer, S., Kadkhodaei, B., Meyers, I., Sidorov, M., Koeck, K., Targeting a Plk1-controlled polarity checkpoint in therapy-resistant glioblastoma-propagating cells (2015) Cancer Res, 75 (24), pp. 5355-5366. , 10.1158/0008-5472.CAN-14-3689 1:CAS:528:DC%2BC2MXitVWrt7fP 26573800 4698003; Singh, D., Chan, J.M., Zoppoli, P., Niola, F., Sullivan, R., Castano, A., Transforming fusions of FGFR and TACC genes in human glioblastoma (2012) Science, 337 (6099), pp. 1231-1235. , 10.1126/science.1220834 1:CAS:528:DC%2BC38Xht1ylsLfI 22837387 3677224; Furnari, F.B., Cloughesy, T.F., Cavenee, W.K., Mischel, P.S., Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma (2015) Nat Rev Cancer, 15 (5), pp. 302-310. , 10.1038/nrc3918 1:CAS:528:DC%2BC2MXmt1Sisr8%3D 25855404 4875778; Meyer, M., Reimand, J., Lan, X., Head, R., Zhu, X., Kushida, M., Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity (2015) Proc Natl Acad Sci U S A, 112 (3), pp. 851-856. , 10.1073/pnas.1320611111 1:CAS:528:DC%2BC2MXjtVWhtQ%3D%3D 25561528 4311802; Gerlinger, M., Rowan, A.J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E., Intratumor heterogeneity and branched evolution revealed by multiregion sequencing (2012) N Engl J Med, 366 (10), pp. 883-892. , 10.1056/NEJMoa1113205 1:CAS:528:DC%2BC38XktFOgtbw%3D 22397650 4878653; Prasad, V., Perspective: The precision-oncology illusion (2016) Nature, 537 (7619), p. S63. , 10.1038/537S63a 1:CAS:528:DC%2BC28XhsVyhsb%2FF 27602743; Liu, Z., Fang, H., Reagan, K., Xu, X., Mendrick, D.L., Slikker, W., Jr., In silico drug repositioning: What we need to know (2013) Drug Discov Today, 18 (3-4), pp. 110-115. , 10.1016/j.drudis.2012.08.005 1:CAS:528:DC%2BC38XhtlGnsL3J 22935104; Patel, M.N., Halling-Brown, M.D., Tym, J.E., Workman, P., Al-Lazikani, B., Objective assessment of cancer genes for drug discovery (2013) Nat Rev Drug Discov, 12 (1), pp. 35-50. , 10.1038/nrd3913. 1:CAS:528:DC%2BC3sXjtler 23274470; Berger, S.I., Iyengar, R., Network analyses in systems pharmacology (2009) Bioinformatics, 25 (19), pp. 2466-2472. , 10.1093/bioinformatics/btp465 1:CAS:528:DC%2BD1MXhtFyhur7F 19648136 2752618; Iorio, F., Rittman, T., Ge, H., Menden, M., Saez-Rodriguez, J., Transcriptional data: A new gateway to drug repositioning? (2013) Drug Discov Today, 18 (7-8), pp. 350-357. , 10.1016/j.drudis.2012.07.014 1:CAS:528:DC%2BC38Xht1ektLbK 22897878 3625109; Cardone, L., Biocomputing drug repurposing toward targeted therapies (2016) Aging (Albany NY), 8 (11), pp. 2609-2610. , 10.18632/aging.101135; Parkinson, H., Sarkans, U., Kolesnikov, N., Abeygunawardena, N., Burdett, T., Dylag, M., ArrayExpress update - An archive of microarray and high-throughput sequencing-based functional genomics experiments (2011) Nucleic Acids Res, 39 (DATABASE), pp. D1002-D1004. , 10.1093/nar/gkq1040 1:CAS:528:DC%2BC3sXivF2mtLs%3D 21071405; Barrett, T., Troup, D.B., Wilhite, S.E., Ngau, W.C., Ledoux, P., NCBI GEO: Mining millions of expression profiles - Database and tools (2005) Nucleic Acids Res, 33 (DATABASE ISSUE), pp. D562-D566. , Suzek TO 10.1093/nar/gki022 1:CAS:528:DC%2BD2MXisVemsw%3D%3D 15608262; Lamb, J., Crawford, E.D., Peck, D., Modell, J.W., Blat, I.C., Wrobel, M.J., The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease (2006) Science, 313 (5795), pp. 1929-1935. , 10.1126/science.1132939 1:CAS:528:DC%2BD28XhtVSnsrbN 17008526; Huang, D.W., Sherman, B.T., Lempicki, R.A., Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources (2008) Nat Protocols, 4 (1), pp. 44-57. , 10.1038/nprot.2008.211; Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles (2005) Proc Natl Acad Sci U S A, 102 (43), pp. 15545-15550. , 10.1073/pnas.0506580102 1:CAS:528:DC%2BD2MXht1ShtrnO 16199517 1239896; Culhane, A.C., Schwarzl, T., Sultana, R., Picard, K.C., Picard, S.C., Lu, T.H., GeneSigDB - A curated database of gene expression signatures (2010) Nucleic Acids Res, 38 (DATABASE ISSUE), pp. D716-D725. , 10.1093/nar/gkp1015 1:CAS:528:DC%2BC3cXktlOhuw%3D%3D 19934259; Iorio, F., Bosotti, R., Scacheri, E., Belcastro, V., Mithbaokar, P., Ferriero, R., Discovery of drug mode of action and drug repositioning from transcriptional responses (2010) Proc Natl Acad Sci U S A, 107 (33), pp. 14621-14626. , 10.1073/pnas.1000138107 1:CAS:528:DC%2BC3cXhtVOgsb7E 20679242 2930479; Carrella, D., Manni, I., Tumaini, B., Dattilo, R., Papaccio, F., Mutarelli, M., Computational drugs repositioning identifies inhibitors of oncogenic PI3K/AKT/P70S6K-dependent pathways among FDA-approved compounds (2016) Oncotarget, 7 (37), pp. 58743-58758. , 10.18632/oncotarget.11318 27542212 5312272; Ghosh, J.C., Siegelin, M.D., Vaira, V., Faversani, A., Tavecchio, M., Chae, Y.C., Adaptive mitochondrial reprogramming and resistance to PI3K therapy (2015) J Natl Cancer Inst., 107 (3); Nevins, J.R., Potti, A., Mining gene expression profiles: Expression signatures as cancer phenotypes (2007) Nat Rev Genet, 8 (8), pp. 601-609. , 10.1038/nrg2137 1:CAS:528:DC%2BD2sXnvVektrc%3D 17607306; Bild, A.H., Yao, G., Chang, J.T., Wang, Q., Potti, A., Chasse, D., Oncogenic pathway signatures in human cancers as a guide to targeted therapies (2006) Nature, 439 (7074), pp. 353-357. , 10.1038/nature04296 1:CAS:528:DC%2BD28XkvF2mtg%3D%3D 16273092; Zhang, Y., Cruickshanks, N., Yuan, F., Wang, B., Pahuski, M., Wulfkuhle, J., Targetable T-type calcium channels drive glioblastoma (2017) Cancer Res, 77 (13), pp. 3479-3490. , 10.1158/0008-5472.CAN-16-2347 1:CAS:528:DC%2BC2sXhtFSmsrfF 28512247; Gerber, D.E., Minna, J.D., ALK inhibition for non-small cell lung cancer: From discovery to therapy in record time (2010) Cancer Cell, 18 (6), pp. 548-551. , 10.1016/j.ccr.2010.11.033 1:CAS:528:DC%2BC3cXhsFGhsbvI 21156280 3110762; Jones, L.H., Neubert, H., Clinical chemoproteomics-opportunities and obstacles (2017) Sci Transl Med., 9 (386); Cheng, F., Hong, H., Yang, S., Wei, Y., Individualized network-based drug repositioning infrastructure for precision oncology in the panomics era (2017) Brief Bioinform, 18 (4), pp. 682-697. , 10.1093/bib/bbw051. 27296652; McCarthy, J.J., McLeod, H.L., Ginsburg, G.S., Genomic medicine: A decade of successes, challenges, and opportunities (2013) Sci Transl Med, 5 (189). , 189sr4 10.1126/scitranslmed.3005785 23761042; Molenaar, R.J., Coelen, R.J., Khurshed, M., Roos, E., Caan, M.W., Van Linde, M.E., Study protocol of a phase IB/II clinical trial of metformin and chloroquine in patients with IDH1-mutated or IDH2-mutated solid tumours (2017) BMJ Open, 7 (6). , e014961 10.1136/bmjopen-2016-014961 28601826 5541450; Chen, X., Wong, Y.K., Wang, J., Zhang, J., Lee, Y.M., Shen, H.M., Target identification with quantitative activity based protein profiling (ABPP) (2017) Proteomics, 17 (3-4); Barglow, K.T., Cravatt, B.F., Activity-based protein profiling for the functional annotation of enzymes (2007) Nat Methods, 4 (10), pp. 822-827. , 10.1038/nmeth1092 1:CAS:528:DC%2BD2sXhtV2mtr%2FN 17901872; Pierobon, M., Wulfkuhle, J., Liotta, L., Petricoin, E., Application of molecular technologies for phosphoproteomic analysis of clinical samples (2015) Oncogene, 34 (7), pp. 805-814. , 10.1038/onc.2014.16 1:CAS:528:DC%2BC2cXjvVyrtb4%3D 24608425; Pierobon, M., VanMeter, A.J., Moroni, N., Galdi, F., Petricoin, E.F., III, Reverse-phase protein microarrays (2012) Methods MolBiol, 823, pp. 215-235. , 10.1007/978-1-60327-216-2-14 1:CAS:528:DC%2BC38Xhs1GlsbfM; Shestov, A.A., Lee, S.C., Nath, K., Guo, L., Nelson, D.S., Roman, J.C., (13)C MRS and LC-MS flux analysis of tumor intermediary metabolism (2016) Front Oncol, 6. , 135 10.3389/fonc.2016.00135 27379200 4908130; Rasper, M., Schafer, A., Piontek, G., Teufel, J., Brockhoff, G., Ringel, F., Aldehyde dehydrogenase 1 positive glioblastoma cells show brain tumor stem cell capacity (2010) Neuro-Oncology, 12 (10), pp. 1024-1033. , 10.1093/neuonc/noq070 1:CAS:528:DC%2BC3cXht1WhsL7E 20627895 3018920; Schafer, A., Teufel, J., Ringel, F., Bettstetter, M., Hoepner, I., Rasper, M., Aldehyde dehydrogenase 1A1 - A new mediator of resistance to temozolomide in glioblastoma (2012) Neuro-Oncology, 14 (12), pp. 1452-1464. , 10.1093/neuonc/nos270 23132408 3499020; Mashimo, T., Pichumani, K., Vemireddy, V., Hatanpaa, K.J., Singh, D.K., Sirasanagandla, S., Acetate is a bioenergetic substrate for human glioblastoma and brain metastases (2014) Cell, 159 (7), pp. 1603-1614. , 10.1016/j.cell.2014.11.025 1:CAS:528:DC%2BC2MXnslKqug%3D%3D 25525878 4374602; Triscott, J., Rose Pambid, M., Dunn, S.E., Concise review: Bullseye: Targeting cancer stem cells to improve the treatment of gliomas by repurposing disulfiram (2015) Stem Cells, 33 (4), pp. 1042-1046. , 10.1002/stem.1956. 1:CAS:528:DC%2BC2MXnsl2lurc%3D 25588723; Lun, X., Wells, J.C., Grinshtein, N., King, J.C., Hao, X., Dang, N.H., Disulfiram when combined with copper enhances the therapeutic effects of temozolomide for the treatment of glioblastoma (2016) Clin Cancer Res; Liu, P., Brown, S., Goktug, T., Channathodiyil, P., Kannappan, V., Hugnot, J.P., Cytotoxic effect of disulfiram/copper on human glioblastoma cell lines and ALDH-positive cancer-stem-like cells (2012) Br J Cancer, 107 (9), pp. 1488-1497. , 10.1038/bjc.2012.442 1:CAS:528:DC%2BC38XhsFOntLjO 23033007 3493777; Triscott, J., Lee, C., Hu, K., Fotovati, A., Berns, R., Pambid, M., Disulfiram, a drug widely used to control alcoholism, suppresses the self-renewal of glioblastoma and over-rides resistance to temozolomide (2012) Oncotarget, 3 (10), pp. 1112-1123. , 10.18632/oncotarget.604 23047041 3717961; Paranjpe, A., Zhang, R., Ali-Osman, F., Bobustuc, G.C., Srivenugopal, K.S., Disulfiram is a direct and potent inhibitor of human O6-methylguanine-DNA methyltransferase (MGMT) in brain tumor cells and mouse brain and markedly increases the alkylating DNA damage (2014) Carcinogenesis, 35 (3), pp. 692-702. , 10.1093/carcin/bgt366 1:CAS:528:DC%2BC2cXjsVSms7w%3D 24193513; Seto, B., Rapamycin and mTOR: A serendipitous discovery and implications for breast cancer (2012) Clin Transl Med, 1 (1), p. 29. , 10.1186/2001-1326-1-29 23369283 3561035; Hegazy, A.M., Yamada, D., Kobayashi, M., Kohno, S., Ueno, M., Ma, A., Therapeutic strategy for targeting aggressive malignant gliomas by disrupting their energy balance (2016) J Biol Chem; Bride, K.L., Vincent, T., Smith-Whitley, K., Lambert, M.P., Bleesing, J.J., Seif, A.E., Sirolimus is effective in relapsed/refractory autoimmune cytopenias: Results of a prospective multi-institutional trial (2016) Blood, 127 (1), pp. 17-28. , 10.1182/blood-2015-07-657981 1:CAS:528:DC%2BC28XhtFOnsLfI 26504182 4705607; Johnson, S.C., Rabinovitch, P.S., Kaeberlein, M., MTOR is a key modulator of ageing and age-related disease (2013) Nature, 493 (7432), pp. 338-345. , 10.1038/nature11861 1:CAS:528:DC%2BC3sXptlyntg%3D%3D 23325216 3687363; Lamming, D.W., Ye, L., Sabatini, D.M., Baur, J.A., Rapalogs and mTOR inhibitors as anti-aging therapeutics (2013) J Clin Invest, 123 (3), pp. 980-989. , 10.1172/JCI64099 1:CAS:528:DC%2BC3sXjvVyhsLs%3D 23454761 3582126; Wick, W., Gorlia, T., Bady, P., Platten, M., Van Den Bent, M.J., Taphoorn, M.J., Phase II study of radiotherapy and Temsirolimus versus Radiochemotherapy with Temozolomide in patients with newly diagnosed glioblastoma without MGMT promoter Hypermethylation (EORTC 26082) (2016) Clin Cancer Res, 22 (19), pp. 4797-4806. , 10.1158/1078-0432.CCR-15-3153 1:CAS:528:DC%2BC28XhslOhsbrJ 27143690; Wu, L., Zhou, B., Oshiro-Rapley, N., Li, M., Paulo, J.A., Webster, C.M., An ancient, unified mechanism for metformin growth inhibition in C. Elegans and cancer (2016) Cell, 167 (7), pp. 1705-1718. , 10.1016/j.cell.2016.11.055 1:CAS:528:DC%2BC28XitFWlsrvN 27984722 e13; Pollak, M.N., Investigating metformin for cancer prevention and treatment: The end of the beginning (2012) Cancer Discov, 2 (9), pp. 778-790. , 10.1158/2159-8290.CD-12-0263 1:CAS:528:DC%2BC38XhtlGgsb3O 22926251; Morales, D.R., Morris, A.D., Metformin in cancer treatment and prevention (2015) Annu Rev Med, 66, pp. 17-29. , 10.1146/annurev-med-062613-093128 1:CAS:528:DC%2BC2MXjvFyhsrc%3D 25386929; Howell, J.J., Hellberg, K., Turner, M., Talbott, G., Kolar, M.J., Ross, D.S., Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex (2017) Cell Metab, 25 (2), pp. 463-471. , 10.1016/j.cmet.2016.12.009 1:CAS:528:DC%2BC2sXhtVCgsrg%3D 28089566; Pernicova, I., Korbonits, M., Metformin-mode of action and clinical implications for diabetes and cancer (2014) Nat Rev Endocrinol, 10 (3), pp. 143-156. , 10.1038/nrendo.2013.256 1:CAS:528:DC%2BC2cXmtVSitA%3D%3D 24393785; Hart, T., Dider, S., Han, W., Xu, H., Zhao, Z., Xie, L., Toward repurposing metformin as a precision anti-cancer therapy using structural systems pharmacology (2016) Sci Rep, 6. , 20441 10.1038/srep20441 1:CAS:528:DC%2BC28XitF2qsbY%3D 26841718 4740793; Strong, R., Miller, R.A., Antebi, A., Astle, C.M., Bogue, M., Denzel, M.S., Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an alpha-glucosidase inhibitor or a Nrf2-inducer (2016) Aging Cell.; Coyle, C., Cafferty, F.H., Vale, C., Langley, R.E., Metformin as an adjuvant treatment for cancer: A systematic review and meta-analysis (2016) Ann Oncol, 27 (12), pp. 2184-2195. , 10.1093/annonc/mdw410 1:STN:280:DC%2BC2svksFWrsg%3D%3D 27681864 5178140; Coulston, F., Dougherty, W.J., LeFevre, R., Abraham, R., Silvestrini, B., Reversible inhibition of spermatogenesis in rats and monkeys with a new class of indazol-carboxylic acids (1975) Exp Mol Pathol, 23 (2), pp. 357-366. , 1:CAS:528:DyaE28Xis1alsA%3D%3D 810366; Nath, K., Guo, L., Nancolas, B., Nelson, D.S., Shestov, A.A., Lee, S.C., Mechanism of antineoplastic activity of lonidamine (2016) Biochim Biophys Acta, 1866 (2), pp. 151-162. , 10.1016/j.bbcan.2016.08.001 1:CAS:528:DC%2BC28XhtlSgs7vO 27497601; Magno, L., Terraneo, F., Bertoni, F., Tordiglione, M., Bardelli, D., Rosignoli, M.T., Double-blind randomized study of lonidamine and radiotherapy in head and neck cancer (1994) Int J Radiat Oncol Biol Phys, 29 (1), pp. 45-55. , 1:STN:280:DyaK2c3jtVSktQ%3D%3D 8175445; Carapella, C.M., Paggi, M.G., Calvosa, F., Cattani, F., Jandolo, B., Mastrostefano, R., Lonidamine in the combined treatment of malignant gliomas. A randomized study (1990) J Neurosurg Sci, 34 (3-4), pp. 261-264. , 1:STN:280:DyaK3M3nslOkug%3D%3D 2098504; Schiffer, D., Sales, S., Soffietti, R., Lonidamine in malignant brain tumors (1991) Semin Oncol, 18 (2), pp. 38-41. , 1:STN:280:DyaK3M3jtlersg%3D%3D 2031197; Guo, L., Shestov, A.A., Worth, A.J., Nath, K., Nelson, D.S., Leeper, D.B., Inhibition of mitochondrial complex II by the anticancer agent Lonidamine (2016) J Biol Chem, 291 (1), pp. 42-57. , 10.1074/jbc.M115.697516 1:CAS:528:DC%2BC28XhsFSnsQ%3D%3D 26521302; Nancolas, B., Guo, L., Zhou, R., Nath, K., Nelson, D.S., Leeper, D.B., The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters (2016) Biochem J, 473 (7), pp. 929-936. , 10.1042/BJ20151120 1:CAS:528:DC%2BC28XkvFCltrs%3D 26831515 4814305; Paggi, M.G., Zupi, G., Fanciulli, M., Del Carlo, C., Giorno, S., Laudonio, N., Effect of lonidamine on the utilization of 14C-labeled glucose by human astrocytoma cells (1987) Exp Mol Pathol, 47 (2), pp. 154-165. , 1:CAS:528:DyaL1cXjtVI%3D 2820786; Floridi, A., Lehninger, A.L., Action of the antitumor and antispermatogenic agent lonidamine on electron transport in Ehrlich ascites tumor mitochondria (1983) Arch Biochem Biophys, 226 (1), pp. 73-83. , 1:CAS:528:DyaL3sXlsFWku7Y%3D 6227286; Davidescu, M., Macchioni, L., Scaramozzino, G., Cristina Marchetti, M., Migliorati, G., Vitale, R., The energy blockers bromopyruvate and lonidamine lead GL15 glioblastoma cells to death by different p53-dependent routes (2015) Sci Rep, 5. , 14343 10.1038/srep14343 1:CAS:528:DC%2BC2MXhsFeisbbN 26387611 4585687; Nath, K., Nelson, D.S., Heitjan, D.F., Leeper, D.B., Zhou, R., Glickson, J.D., Lonidamine induces intracellular tumor acidification and ATP depletion in breast, prostate and ovarian cancer xenografts and potentiates response to doxorubicin (2015) NMR Biomed, 28 (3), pp. 281-290. , 10.1002/nbm.3240 1:CAS:528:DC%2BC2MXjtFaqsrg%3D 25504852; Schmeisser, S., Zarse, K., Ristow, M., Lonidamine extends lifespan of adult Caenorhabditis Elegans by increasing the formation of mitochondrial reactive oxygen species (2011) Horm Metab Res, 43 (10), pp. 687-692. , 10.1055/s-0031-1286308 1:CAS:528:DC%2BC3MXhsVWhsbjO 21932172; Tommasino, C., Gambardella, L., Buoncervello, M., Griffin, R.J., Golding, B.T., Alberton, M., New derivatives of the antimalarial drug Pyrimethamine in the control of melanoma tumor growth: An in vitro and in vivo study (2016) J Exp Clin Cancer Res, 35 (1), p. 137. , 10.1186/s13046-016-0409-9. 27599543 5013574; Levy, J.M.M., Towers, C.G., Thorburn, A., Targeting autophagy in cancer (2017) Nat Rev Cancer, 17 (9), pp. 528-542. , 10.1038/nrc.2017.53 1:CAS:528:DC%2BC2sXht1eqt77I 28751651; Wang, Z., Liu, P., Chen, Q., Deng, S., Liu, X., Situ, H., Targeting AMPK signaling pathway to overcome drug resistance for cancer therapy (2016) Curr Drug Targets, 17 (8), pp. 853-864. , 1:CAS:528:DC%2BC28XnvFSjs70%3D 25777274; Yoshida, G.J., Metabolic reprogramming: The emerging concept and associated therapeutic strategies (2015) J Exp Clin Cancer Res, 34 (1), p. 111. , 10.1186/s13046-015-0221-y. 26445347 4595070; Vitale, I., Manic, G., Dandrea, V., De Maria, R., Role of autophagy in the maintenance and function of cancer stem cells (2015) Int J Dev Biol, 59 (1-3), pp. 95-108. , 10.1387/ijdb.150082iv 1:CAS:528:DC%2BC28XmvFKjtr4%3D 26374531; Yan, Y., Xu, Z., Dai, S., Qian, L., Sun, L., Gong, Z., Targeting autophagy to sensitive glioma to temozolomide treatment (2016) J Exp Clin Cancer Res, 35. , 23 10.1186/s13046-016-0303-5 26830677 4736617; Li, C., Liu, Y., Liu, H., Zhang, W., Shen, C., Cho, K., Impact of autophagy inhibition at different stages on cytotoxic effect of autophagy inducer in glioblastoma cells (2015) Cell Physiol Biochem, 35 (4), pp. 1303-1316. , 10.1159/000373952 1:CAS:528:DC%2BC2MXmsVWhu70%3D 25721868; Choi, D.S., Blanco, E., Kim, Y.S., Rodriguez, A.A., Zhao, H., Huang, T.H., Chloroquine eliminates cancer stem cells through deregulation of Jak2 and DNMT1 (2014) Stem Cells, 32 (9), pp. 2309-2323. , 10.1002/stem.1746. 1:CAS:528:DC%2BC2cXhslOks7jP 24809620 4138251; Kimura, T., Takabatake, Y., Takahashi, A., Isaka, Y., Chloroquine in cancer therapy: A double-edged sword of autophagy (2013) Cancer Res, 73 (1), pp. 3-7. , 10.1158/0008-5472.CAN-12-2464 1:CAS:528:DC%2BC3sXjs1Wqtg%3D%3D 23288916; Pascolo, S., Time to use a dose of chloroquine as an adjuvant to anti-cancer chemotherapies (2016) Eur J Pharmacol, 771, pp. 139-144. , 10.1016/j.ejphar.2015.12.017 1:CAS:528:DC%2BC28XnvVOquw%3D%3D 26687632; Lee, S.W., Kim, H.K., Lee, N.H., Yi, H.Y., Kim, H.S., Hong, S.H., The synergistic effect of combination temozolomide and chloroquine treatment is dependent on autophagy formation and p53 status in glioma cells (2015) Cancer Lett, 360 (2), pp. 195-204. , 10.1016/j.canlet.2015.02.012 1:CAS:528:DC%2BC2MXivFWrtrk%3D 25681668; Hori, Y.S., Hosoda, R., Akiyama, Y., Sebori, R., Wanibuchi, M., Mikami, T., Chloroquine potentiates temozolomide cytotoxicity by inhibiting mitochondrial autophagy in glioma cells (2015) J Neuro-Oncol, 122 (1), pp. 11-20. , 10.1007/s11060-014-1686-9 1:CAS:528:DC%2BC2cXitFOrsLrI; Rosenfeld, M.R., Ye, X., Supko, J.G., Desideri, S., Grossman, S.A., Brem, S., A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme (2014) Autophagy, 10 (8), pp. 1359-1368. , 10.4161/auto.28984 1:CAS:528:DC%2BC2MXkt1agurs%3D 24991840 4203513; Briceno, E., Reyes, S., Sotelo, J., Therapy of glioblastoma multiforme improved by the antimutagenic chloroquine (2003) Neurosurg Focus, 14 (2). , e3 15727424; Sotelo, J., Briceno, E., Lopez-Gonzalez, M.A., Adding chloroquine to conventional treatment for glioblastoma multiforme: A randomized, double-blind, placebo-controlled trial (2006) Ann Intern Med, 144 (5), pp. 337-343. , 1:CAS:528:DC%2BD28XivVyntLo%3D 16520474; Briceno, E., Calderon, A., Sotelo, J., Institutional experience with chloroquine as an adjuvant to the therapy for glioblastoma multiforme (2007) Surg Neurol, 67 (4), pp. 388-391. , 10.1016/j.surneu.2006.08.080 17350410; Golden, E.B., Cho, H.Y., Hofman, F.M., Louie, S.G., Schonthal, A.H., Chen, T.C., Quinoline-based antimalarial drugs: A novel class of autophagy inhibitors (2015) Neurosurg Focus, 38 (3), p. E12. , 10.3171/2014.12.FOCUS14748 25727221; Lee, M.S., Johansen, L., Zhang, Y., Wilson, A., Keegan, M., Avery, W., The novel combination of chlorpromazine and pentamidine exerts synergistic antiproliferative effects through dual mitotic action (2007) Cancer Res, 67 (23), pp. 11359-11367. , 10.1158/0008-5472.CAN-07-2235 1:CAS:528:DC%2BD2sXhtlyiu7zL 18056463; Shin, S.Y., Lee, K.S., Choi, Y.K., Lim, H.J., Lee, H.G., Lim, Y., The antipsychotic agent chlorpromazine induces autophagic cell death by inhibiting the Akt/mTOR pathway in human U-87MG glioma cells (2013) Carcinogenesis, 34 (9), pp. 2080-2089. , 10.1093/carcin/bgt169 1:CAS:528:DC%2BC3sXhslWns7%2FL 23689352; Dolma, S., Selvadurai, H.J., Lan, X., Lee, L., Kushida, M., Voisin, V., Inhibition of dopamine receptor D4 impedes Autophagic flux, proliferation, and survival of glioblastoma stem cells (2016) Cancer Cell, 29 (6), pp. 859-873. , 10.1016/j.ccell.2016.05.002 1:CAS:528:DC%2BC28XpslyqsLg%3D 27300435; Fan, Q., Aksoy, O., Wong, R.A., Ilkhanizadeh, S., Novotny, C.J., Gustafson, W.C., A kinase inhibitor targeted to mTORC1 drives regression in glioblastoma (2017) Cancer Cell, 31 (3), pp. 424-435. , 10.1016/j.ccell.2017.01.014 1:CAS:528:DC%2BC2sXksVeqsLs%3D 28292440; Tanaka, K., Sasayama, T., Irino, Y., Takata, K., Nagashima, H., Satoh, N., Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment (2015) J Clin Invest, 125 (4), pp. 1591-1602. , 10.1172/JCI78239 25798620 4396477; Ward, P.S., Thompson, C.B., Metabolic reprogramming: A cancer hallmark even Warburg did not anticipate (2012) Cancer Cell, 21 (3), pp. 297-308. , 10.1016/j.ccr.2012.02.014 1:CAS:528:DC%2BC38Xkt1ylsbc%3D 22439925 3311998; Cairns, R.A., Harris, I.S., Mak, T.W., Regulation of cancer cell metabolism (2011) NatRevCancer, 11 (2), pp. 85-95. , doi:nrc2981 [pii];doi: 10.1038/nrc2981 [doi]; Pedersen, P.L., Warburg, me and hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers' most common phenotypes, the «warburg effect», i.E., elevated glycolysis in the presence of oxygen (2007) J Bioenerg Biomembr, 39 (3), pp. 211-222. , 10.1007/s10863-007-9094-x 1:CAS:528:DC%2BD2sXhtF2iu7zP 17879147; Floridi, A., Paggi, M.G., Fanciulli, M., Modulation of glycolysis in neuroepithelial tumors (1989) J Neurosurg Sci, 33 (1), pp. 55-64. , 1:STN:280:DyaL1MzotFygug%3D%3D 2674359; Paggi, M.G., Fanciulli, M., Del Carlo, C., Citro, G., Carapella, C.M., Floridi, A., The membrane-bound hexokinase as a potential marker for malignancy in human gliomas (1990) J Neurosurg Sci, 34, pp. 209-213. , 1:STN:280:DyaK3M3nslOltQ%3D%3D 2098498; Zhou, Y., Zhou, Y., Shingu, T., Feng, L., Chen, Z., Ogasawara, M., Metabolic alterations in highly tumorigenic glioblastoma cells: Preference for hypoxia and high dependency on glycolysis (2011) J Biol Chem, 286 (37), pp. 32843-32853. , 10.1074/jbc.M111.260935 1:CAS:528:DC%2BC3MXhtFCisr7M 21795717 3173179; Hanahan, D., Weinberg, R.A., Hallmarks of cancer: The next generation (2011) Cell, 144 (5), pp. 646-674. , 10.1016/j.cell.2011.02.013 1:CAS:528:DC%2BC3MXjsFeqtrk%3D 21376230; Roberts, D.J., Tan-Sah, V.P., Ding, E.Y., Smith, J.M., Miyamoto, S., Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition (2014) Mol Cell, 53 (4), pp. 521-533. , 10.1016/j.molcel.2013.12.019 1:CAS:528:DC%2BC2cXht1Gnt7g%3D 24462113 3943874; Sanduja, S., Feng, Y., Mathis, R.A., Sokol, E.S., Reinhardt, F., Halaban, R., AMPK promotes tolerance to Ras pathway inhibition by activating autophagy (2016) Oncogene, 35 (40), pp. 5295-5303. , 10.1038/onc.2016.70 1:CAS:528:DC%2BC28Xltlejurg%3D 27041569; Yl, H., DeLay, M., Jahangiri, A., Molinaro, A.M., Rose, S.D., Carbonell, W.S., Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma (2012) Cancer Res, 72 (7), pp. 1773-1783; Talarico, C., Dattilo, V., D'Antona, L., Menniti, M., Bianco, C., Ortuso, F., SGK1, the new player in the game of resistance: Chemo-radio molecular target and strategy for inhibition (2016) Cell Physiol Biochem, 39 (5), pp. 1863-1876. , 10.1159/000447885 1:CAS:528:DC%2BC28XhvVemtr%2FL 27771704; D'Antona, L., Amato, R., Talarico, C., Ortuso, F., Menniti, M., Dattilo, V., SI113, a specific inhibitor of the Sgk1 kinase activity that counteracts cancer cell proliferation (2015) Cell Physiol Biochem, 35 (5), pp. 2006-2018. , 10.1159/000374008 25871776
PY - 2017
Y1 - 2017
N2 - Background: Glioblastoma Multiforme is the deadliest type of brain tumor and is characterized by very poor prognosis with a limited overall survival. Current optimal therapeutic approach has essentially remained unchanged for more than a decade, consisting in maximal surgical resection followed by radiotherapy plus temozolomide. Main body: Such a dismal patient outcome represents a compelling need for innovative and effective therapeutic approaches. Given the development of new drugs is a process presently characterized by an immense increase in costs and development time, drug repositioning, finding new uses for existing approved drugs or drug repurposing, re-use of old drugs when novel molecular findings make them attractive again, are gaining significance in clinical pharmacology, since it allows faster and less expensive delivery of potentially useful drugs from the bench to the bedside. This is quite evident in glioblastoma, where a number of old drugs is now considered for clinical use, often in association with the first-line therapeutic intervention. Interestingly, most of these medications are, or have been, widely employed for decades in non-neoplastic pathologies without relevant side effects. Now, the refinement of their molecular mechanism(s) of action through up-to-date technologies is paving the way for their use in the therapeutic approach of glioblastoma as well as other cancer types. Short conclusion: The spiraling costs of new antineoplastic drugs and the long time required for them to reach the market demands a profoundly different approach to keep lifesaving therapies affordable for cancer patients. In this context, repurposing can represent a relatively inexpensive, safe and fast approach to glioblastoma treatment. To this end, pros and cons must be accurately considered. © 2017 The Author(s).
AB - Background: Glioblastoma Multiforme is the deadliest type of brain tumor and is characterized by very poor prognosis with a limited overall survival. Current optimal therapeutic approach has essentially remained unchanged for more than a decade, consisting in maximal surgical resection followed by radiotherapy plus temozolomide. Main body: Such a dismal patient outcome represents a compelling need for innovative and effective therapeutic approaches. Given the development of new drugs is a process presently characterized by an immense increase in costs and development time, drug repositioning, finding new uses for existing approved drugs or drug repurposing, re-use of old drugs when novel molecular findings make them attractive again, are gaining significance in clinical pharmacology, since it allows faster and less expensive delivery of potentially useful drugs from the bench to the bedside. This is quite evident in glioblastoma, where a number of old drugs is now considered for clinical use, often in association with the first-line therapeutic intervention. Interestingly, most of these medications are, or have been, widely employed for decades in non-neoplastic pathologies without relevant side effects. Now, the refinement of their molecular mechanism(s) of action through up-to-date technologies is paving the way for their use in the therapeutic approach of glioblastoma as well as other cancer types. Short conclusion: The spiraling costs of new antineoplastic drugs and the long time required for them to reach the market demands a profoundly different approach to keep lifesaving therapies affordable for cancer patients. In this context, repurposing can represent a relatively inexpensive, safe and fast approach to glioblastoma treatment. To this end, pros and cons must be accurately considered. © 2017 The Author(s).
KW - Cancer treatment
KW - Drug repositioning
KW - Drug repurposing
KW - Glioblastoma multiforme
KW - High-throughput technologies
KW - Signal transduction, Energy metabolism
KW - aprepitant
KW - auranofin
KW - captopril
KW - celecoxib
KW - chloroquine
KW - chlorpromazine
KW - copper
KW - disulfiram
KW - epidermal growth factor receptor
KW - gluconate copper
KW - itraconazole
KW - lonidamine
KW - mefloquine
KW - memantine
KW - metformin
KW - minocycline
KW - phosphatidylinositol 3 kinase
KW - rapamycin
KW - ritonavir
KW - sertraline
KW - temozolomide
KW - cancer prognosis
KW - cancer therapy
KW - computer model
KW - drug repositioning
KW - genomics
KW - glioblastoma
KW - human
KW - mass spectrometry
KW - molecular mechanics
KW - nonhuman
KW - nuclear magnetic resonance spectroscopy
KW - priority journal
KW - protein microarray
KW - proteomics
KW - Review
KW - treatment outcome
U2 - 10.1186/s13046-017-0642-x
DO - 10.1186/s13046-017-0642-x
M3 - Article
VL - 36
JO - Journal of Experimental and Clinical Cancer Research
JF - Journal of Experimental and Clinical Cancer Research
SN - 0392-9078
IS - 1
ER -