Dystonia and dopamine: From phenomenology to pathophysiology

Bastien Ribot, Jérome Aupy, Marie Vidailhet, Joachim Mazère, Antonio Pisani, Erwan Bezard, Dominique Guehl, Pierre Burbaud

Research output: Contribution to journalReview articlepeer-review

Abstract

A line of evidence suggests that the pathophysiology of dystonia involves the striatum, whose activity is modulated among other neurotransmitters, by the dopaminergic system. However, the link between dystonia and dopamine appears complex and remains unclear. Here, we propose a physiological approach to investigate the clinical and experimental data supporting a role of the dopaminergic system in the pathophysiology of dystonic syndromes. Because dystonia is a disorder of motor routines, we first focus on the role of dopamine and striatum in procedural learning. Second, we consider the phenomenology of dystonia from every angle in order to search for features giving food for thought regarding the pathophysiology of the disorder. Then, for each dystonic phenotype, we review, when available, the experimental and imaging data supporting a connection with the dopaminergic system. Finally, we propose a putative model in which the different phenotypes could be explained by changes in the balance between the direct and indirect striato-pallidal pathways, a process critically controlled by the level of dopamine within the striatum. Search strategy and selection criteria References for this article were identified through searches in PubMed with the search terms « dystonia », « dopamine”, « striatum », « basal ganglia », « imaging data », « animal model », « procedural learning », « pathophysiology », and « plasticity » from 1998 until 2018. Articles were also identified through searches of the authors' own files. Only selected papers published in English were reviewed. The final reference list was generated on the basis of originality and relevance to the broad scope of this review.

Original languageEnglish
Article number101678
JournalProgress in Neurobiology
DOIs
Publication statusPublished - Jan 1 2019

Keywords

  • Basal ganglia
  • Dopamine
  • Dystonia
  • Pathophysiology
  • Phenomenology
  • Plasticity

ASJC Scopus subject areas

  • Neuroscience(all)

Fingerprint Dive into the research topics of 'Dystonia and dopamine: From phenomenology to pathophysiology'. Together they form a unique fingerprint.

Cite this