Early and late stretch responses of human foot muscles induced by perturbation of stance

M. Schieppati, A. Nardone, R. Siliotto, M. Grasso

Research output: Contribution to journalArticle

90 Citations (Scopus)

Abstract

In eight subjects standing on a movable platform, surface EMG activity was recorded from the foot muscles extensor digitorum brevis (EDB) and flexor digitorum brevis (FDB) and from the leg muscles soleus (Sol) and tibialis anterior (TA) during perturbations of upright stance. Perturbations inducing foot dorsiflexion (upward tilt and backward translation) evoked a short-latency response (SLR) and a medium-latency response (MLR) to stretch in the physiological extensors FDB and Sol, and a long-latency response (LLR) in the physiological flexors EDB and TA. Perturbations inducing plantarflexion (downward tilt and forward translation) evoked the MLR in EDB and TA, and the LLR in FDB and Sol. The latency of the FDB and Sol SLR was compared to that of the H and T reflexes evoked in the same muscles by electrical or mechanical stimulation, respectively. In both muscles, the T reflex and the SLR followed the H reflex at delays accounted for by the different stimulation mode, indicating that the SLR induced in both muscles by upward tilt and backward translation was a true autogenetic stretch reflex from spindle primaries. The time interval between the onset of SLR and of MLR was significantly greater for the FDB than the Sol muscle, suggesting that MLR is a spinal reflex travelling through slower peripheral afferent pathways than SLR. From these latency differences and from the distance between the muscles, we calculated in four subjects the conduction velocity of the afferent fibres presumably responsible for the MLR in FDB. This was about 29 m/s. LLRs were evoked in TA and EDB during upward tilt and backward translation, and in Sol and FDB during downward tilt, but not forward translation. LLRs did not adhere to a proximal-to-distal pattern, since these could appear earlier in the foot than in the leg muscles. All responses were modulated by perturbation type (tilt vs translation) and body posture (normal stance vs forward leaning). Both the large amplitude of the foot muscle responses and their temporal pattern indicate that the muscles acting on the toes play a major role in stabilising posture. Their action increases in amplitude and extends in time the foot-ground reaction force, thereby improving the efficiency of the superimposed action of the leg muscle responses.

Original languageEnglish
Pages (from-to)411-422
Number of pages12
JournalExperimental Brain Research
Volume105
Issue number3
DOIs
Publication statusPublished - 1995

Fingerprint

Reaction Time
Foot
Muscles
Reflex
Leg
Posture
Skeletal Muscle
H-Reflex
Afferent Pathways
Stretch Reflex
Toes

Keywords

  • Foot muscles
  • Human
  • Posture
  • Reflex
  • Spindle secondary afferents

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Early and late stretch responses of human foot muscles induced by perturbation of stance. / Schieppati, M.; Nardone, A.; Siliotto, R.; Grasso, M.

In: Experimental Brain Research, Vol. 105, No. 3, 1995, p. 411-422.

Research output: Contribution to journalArticle

@article{e8ad25f1681a4fccbcca1461a8afb59a,
title = "Early and late stretch responses of human foot muscles induced by perturbation of stance",
abstract = "In eight subjects standing on a movable platform, surface EMG activity was recorded from the foot muscles extensor digitorum brevis (EDB) and flexor digitorum brevis (FDB) and from the leg muscles soleus (Sol) and tibialis anterior (TA) during perturbations of upright stance. Perturbations inducing foot dorsiflexion (upward tilt and backward translation) evoked a short-latency response (SLR) and a medium-latency response (MLR) to stretch in the physiological extensors FDB and Sol, and a long-latency response (LLR) in the physiological flexors EDB and TA. Perturbations inducing plantarflexion (downward tilt and forward translation) evoked the MLR in EDB and TA, and the LLR in FDB and Sol. The latency of the FDB and Sol SLR was compared to that of the H and T reflexes evoked in the same muscles by electrical or mechanical stimulation, respectively. In both muscles, the T reflex and the SLR followed the H reflex at delays accounted for by the different stimulation mode, indicating that the SLR induced in both muscles by upward tilt and backward translation was a true autogenetic stretch reflex from spindle primaries. The time interval between the onset of SLR and of MLR was significantly greater for the FDB than the Sol muscle, suggesting that MLR is a spinal reflex travelling through slower peripheral afferent pathways than SLR. From these latency differences and from the distance between the muscles, we calculated in four subjects the conduction velocity of the afferent fibres presumably responsible for the MLR in FDB. This was about 29 m/s. LLRs were evoked in TA and EDB during upward tilt and backward translation, and in Sol and FDB during downward tilt, but not forward translation. LLRs did not adhere to a proximal-to-distal pattern, since these could appear earlier in the foot than in the leg muscles. All responses were modulated by perturbation type (tilt vs translation) and body posture (normal stance vs forward leaning). Both the large amplitude of the foot muscle responses and their temporal pattern indicate that the muscles acting on the toes play a major role in stabilising posture. Their action increases in amplitude and extends in time the foot-ground reaction force, thereby improving the efficiency of the superimposed action of the leg muscle responses.",
keywords = "Foot muscles, Human, Posture, Reflex, Spindle secondary afferents",
author = "M. Schieppati and A. Nardone and R. Siliotto and M. Grasso",
year = "1995",
doi = "10.1007/BF00233041",
language = "English",
volume = "105",
pages = "411--422",
journal = "Experimental Brain Research",
issn = "0014-4819",
publisher = "Springer Verlag",
number = "3",

}

TY - JOUR

T1 - Early and late stretch responses of human foot muscles induced by perturbation of stance

AU - Schieppati, M.

AU - Nardone, A.

AU - Siliotto, R.

AU - Grasso, M.

PY - 1995

Y1 - 1995

N2 - In eight subjects standing on a movable platform, surface EMG activity was recorded from the foot muscles extensor digitorum brevis (EDB) and flexor digitorum brevis (FDB) and from the leg muscles soleus (Sol) and tibialis anterior (TA) during perturbations of upright stance. Perturbations inducing foot dorsiflexion (upward tilt and backward translation) evoked a short-latency response (SLR) and a medium-latency response (MLR) to stretch in the physiological extensors FDB and Sol, and a long-latency response (LLR) in the physiological flexors EDB and TA. Perturbations inducing plantarflexion (downward tilt and forward translation) evoked the MLR in EDB and TA, and the LLR in FDB and Sol. The latency of the FDB and Sol SLR was compared to that of the H and T reflexes evoked in the same muscles by electrical or mechanical stimulation, respectively. In both muscles, the T reflex and the SLR followed the H reflex at delays accounted for by the different stimulation mode, indicating that the SLR induced in both muscles by upward tilt and backward translation was a true autogenetic stretch reflex from spindle primaries. The time interval between the onset of SLR and of MLR was significantly greater for the FDB than the Sol muscle, suggesting that MLR is a spinal reflex travelling through slower peripheral afferent pathways than SLR. From these latency differences and from the distance between the muscles, we calculated in four subjects the conduction velocity of the afferent fibres presumably responsible for the MLR in FDB. This was about 29 m/s. LLRs were evoked in TA and EDB during upward tilt and backward translation, and in Sol and FDB during downward tilt, but not forward translation. LLRs did not adhere to a proximal-to-distal pattern, since these could appear earlier in the foot than in the leg muscles. All responses were modulated by perturbation type (tilt vs translation) and body posture (normal stance vs forward leaning). Both the large amplitude of the foot muscle responses and their temporal pattern indicate that the muscles acting on the toes play a major role in stabilising posture. Their action increases in amplitude and extends in time the foot-ground reaction force, thereby improving the efficiency of the superimposed action of the leg muscle responses.

AB - In eight subjects standing on a movable platform, surface EMG activity was recorded from the foot muscles extensor digitorum brevis (EDB) and flexor digitorum brevis (FDB) and from the leg muscles soleus (Sol) and tibialis anterior (TA) during perturbations of upright stance. Perturbations inducing foot dorsiflexion (upward tilt and backward translation) evoked a short-latency response (SLR) and a medium-latency response (MLR) to stretch in the physiological extensors FDB and Sol, and a long-latency response (LLR) in the physiological flexors EDB and TA. Perturbations inducing plantarflexion (downward tilt and forward translation) evoked the MLR in EDB and TA, and the LLR in FDB and Sol. The latency of the FDB and Sol SLR was compared to that of the H and T reflexes evoked in the same muscles by electrical or mechanical stimulation, respectively. In both muscles, the T reflex and the SLR followed the H reflex at delays accounted for by the different stimulation mode, indicating that the SLR induced in both muscles by upward tilt and backward translation was a true autogenetic stretch reflex from spindle primaries. The time interval between the onset of SLR and of MLR was significantly greater for the FDB than the Sol muscle, suggesting that MLR is a spinal reflex travelling through slower peripheral afferent pathways than SLR. From these latency differences and from the distance between the muscles, we calculated in four subjects the conduction velocity of the afferent fibres presumably responsible for the MLR in FDB. This was about 29 m/s. LLRs were evoked in TA and EDB during upward tilt and backward translation, and in Sol and FDB during downward tilt, but not forward translation. LLRs did not adhere to a proximal-to-distal pattern, since these could appear earlier in the foot than in the leg muscles. All responses were modulated by perturbation type (tilt vs translation) and body posture (normal stance vs forward leaning). Both the large amplitude of the foot muscle responses and their temporal pattern indicate that the muscles acting on the toes play a major role in stabilising posture. Their action increases in amplitude and extends in time the foot-ground reaction force, thereby improving the efficiency of the superimposed action of the leg muscle responses.

KW - Foot muscles

KW - Human

KW - Posture

KW - Reflex

KW - Spindle secondary afferents

UR - http://www.scopus.com/inward/record.url?scp=0029150643&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029150643&partnerID=8YFLogxK

U2 - 10.1007/BF00233041

DO - 10.1007/BF00233041

M3 - Article

VL - 105

SP - 411

EP - 422

JO - Experimental Brain Research

JF - Experimental Brain Research

SN - 0014-4819

IS - 3

ER -