Abstract
Original language | English |
---|---|
Pages (from-to) | 1287-1310 |
Number of pages | 24 |
Journal | Clin. Neurophysiol. |
Volume | 131 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2020 |
Keywords
- AD biomarkers
- Alzheimer's disease
- Dementia
- Early diagnosis
- EEG analysis
- EEG rhythms
- Event-related responses
- Mild cognitive impairment
- biological marker
- Alzheimer disease
- attention
- cerebrospinal fluid analysis
- cost effectiveness analysis
- diagnostic accuracy
- early diagnosis
- electroencephalogram
- epidemiology
- functional connectivity
- functional magnetic resonance imaging
- genetic marker
- human
- neuroimaging
- nuclear magnetic resonance imaging
- positron emission tomography
- priority journal
- Review
- sensitivity and specificity
- time series analysis
- working memory
- brain
- electroencephalography
- pathophysiology
- signal processing
- Alzheimer Disease
- Biomarkers
- Brain
- Early Diagnosis
- Electroencephalography
- Humans
- Sensitivity and Specificity
- Signal Processing, Computer-Assisted
Fingerprint Dive into the research topics of 'Early diagnosis of Alzheimer's disease: the role of biomarkers including advanced EEG signal analysis. Report from the IFCN-sponsored panel of experts: Clinical Neurophysiology'. Together they form a unique fingerprint.
Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Early diagnosis of Alzheimer's disease: the role of biomarkers including advanced EEG signal analysis. Report from the IFCN-sponsored panel of experts : Clinical Neurophysiology. / Rossini, P.M.; Di Iorio, R.; Vecchio, F.; Anfossi, M.; Babiloni, C.; Bozzali, M.; Bruni, A.C.; Cappa, S.F.; Escudero, J.; Fraga, F.J.; Giannakopoulos, P.; Guntekin, B.; Logroscino, G.; Marra, C.; Miraglia, F.; Panza, F.; Tecchio, F.; Pascual-Leone, A.; Dubois, B.
In: Clin. Neurophysiol., Vol. 131, No. 6, 2020, p. 1287-1310.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Early diagnosis of Alzheimer's disease: the role of biomarkers including advanced EEG signal analysis. Report from the IFCN-sponsored panel of experts
T2 - Clinical Neurophysiology
AU - Rossini, P.M.
AU - Di Iorio, R.
AU - Vecchio, F.
AU - Anfossi, M.
AU - Babiloni, C.
AU - Bozzali, M.
AU - Bruni, A.C.
AU - Cappa, S.F.
AU - Escudero, J.
AU - Fraga, F.J.
AU - Giannakopoulos, P.
AU - Guntekin, B.
AU - Logroscino, G.
AU - Marra, C.
AU - Miraglia, F.
AU - Panza, F.
AU - Tecchio, F.
AU - Pascual-Leone, A.
AU - Dubois, B.
N1 - Cited By :15 Export Date: 17 February 2021 CODEN: CNEUF Correspondence Address: Di Iorio, R.; Institute of Neurology, Italy; email: r.diiorio@live.it Chemicals/CAS: Biomarkers Funding details: Horizon 2020 Framework Programme, H2020 Funding details: Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP, 2017/15243-7, 2018/03655-1 Funding details: Türkiye Bilimler Akademisi Funding text 1: Dr. Claudio Babiloni was partially supported by the H2020 Marie S. Curie ITN-ETN project with the short title “BBDiag” (http://bbdiag-itn-etn.eu). Funding text 2: Dr. Francisco J. Fraga was partially supported by the São Paulo Research Foundation (FAPESP), Brazil, grants # 2017/15243-7 and #2018/03655-1 . Funding text 3: Dr. Claudio Babiloni was partially supported by the H2020 Marie S. Curie ITN-ETN project with the short title ?BBDiag? (http://bbdiag-itn-etn.eu). Dr. Bahar G?ntekin was supported by Turkish Academy of Sciences (T?BA), Turkey, The Young Scientists Award Programme (GEBIP) during her research performed with AD patients. Dr. Francisco J. Fraga was partially supported by the S?o Paulo Research Foundation (FAPESP), Brazil, grants #2017/15243-7 and #2018/03655-1. Funding text 4: Dr. Bahar Güntekin was supported by Turkish Academy of Sciences (TÜBA), Turkey, The Young Scientists Award Programme (GEBIP) during her research performed with AD patients. References: Abeles, M., Corticonics: neural circuits of the cerebral cortex (1991), Cambridge UP New York; Adler, G., Brassen, S., Jajcevic, A., EEG coherence in Alzheimer's dementia (2003) J Neural Transm, 110, pp. 1051-1058; Adrian, E.D., Moruzzi, G., Impulses in the pyramidal tract (1939) J Physiol, 97, pp. 153-199; Ahmed, M.U., Mandic, D.P., Multivariate multiscale entropy: A tool for complexity analysis of multichannel data (2011) Phys Rev E, 84, p. 61918; Albert, M.S., DeKosky, S.T., Dickson, D., Dubois, B., Feldman, H.H., Fox, N.C., The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease (2011) Alzheimers Dement, 7, pp. 270-279; Aoki, Y., Ishii, R., Pascual-Marqui, R.D., Canuet, L., Ikeda, S., Hata, M., Detection of EEG-resting state independent networks by eLORETA-ICA method (2015) Front Hum Neurosci, 9, p. 31; Ashburner, J., Friston, K.J., Voxel-based morphometry–the methods (2000) Neuroimage, 11, pp. 805-821; Azami, H., Abásolo, D., Simons, S., Escudero, J., Univariate and multivariate generalized multiscale entropy to characterise EEG signals in Alzheimer's disease (2017) Entropy, 19, p. 31; Azami, H., Escudero, J., Amplitude- and fluctuation-based dispersion entropy (2018) Entropy; Azami, H., Escudero, J., Coarse-graining approaches in univariate and multiscale sample and dispersion entropy (2018) Entropy, 20, p. 138; Azami, H., Escudero, J., Refined composite multivariate generalized multiscale fuzzy entropy: A tool for complexity analysis of multichannel signals (2017) Phys A, 465, pp. 261-276; Azami, H., Rostaghi, M., Abásolo, D., Escudero, J., Refined composite multiscale dispersion entropy and its application to biomedical signals (2017) IEEE Trans Biomed Eng, 64, pp. 2872-2879; Babiloni, C., Babiloni, F., Carducci, F., Cincotti, F., Del Percio, C., De Pino, G., Movement-related electroencephalographic reactivity in Alzheimer disease (2000) Neuroimage, 12, pp. 139-146; Babiloni, C., Carducci, F., Lizio, R., Vecchio, F., Baglieri, A., Bernardini, S., Resting state cortical electroencephalographic rhythms are related to gray matter volume in subjects with mild cognitive impairment and Alzheimer's disease (2013) Hum Brain Mapp, 34, pp. 1427-1446; Babiloni, C., Cassetta, E., Chiovenda, P., Del Percio, C., Ercolani, M., Moretti, D.V., Α rhythms in mild dements during visual delayed choice reaction time tasks: a MEG study (2005) Brain Res Bull, 65, pp. 457-470; Babiloni, C., De Pandis, M.F., Vecchio, F., Buffo, P., Sorpresi, F., Frisoni, G.B., Cortical sources of resting state electroencephalographic rhythms in Parkinson's disease related dementia and Alzheimer's disease (2011) Clin Neurophysiol, 122, pp. 2355-2364; Babiloni, C., Del Percio, C., Boccardi, M., Lizio, R., Lopez, S., Carducci, F., Occipital sources of resting-state α rhythms are related to local gray matter density in subjects with amnesic mild cognitive impairment and Alzheimer's disease (2015) Neurobiol Aging, 36, pp. 556-570; Babiloni, C., Frisoni, G.B., Pievani, M., Vecchio, F., Lizio, R., Buttiglione, M., Hippocampal volume and cortical sources of EEG α rhythms in mild cognitive impairment and Alzheimer disease (2009) Neuroimage, 44, pp. 123-135; Babiloni, C., Lizio, R., Marzano, N., Capotosto, P., Soricelli, A., Triggiani, A.I., Brain neural synchronization and functional coupling in Alzheimer's disease as revealed by resting state EEG rhythms (2016) Int J Psychophysiol, 103, pp. 88-102; Babiloni, C., Vecchio, F., Lizio, R., Ferri, R., Rodriguez, G., Marzano, N., Resting state cortical rhythms in mild cognitive impairment and Alzheimer's disease: electroencephalographic evidence (2011) J Alzheimers Dis, 3, pp. 201-214; Bandt, C., Pompe, B., Permutation entropy: a natural complexity measure for time series (2002) Phys Rev Lett, 88. , 174102; Barnett, J.H., Lewis, L., Blackwell, A.D., Taylor, M., Early intervention in Alzheimer's disease: a health economic study of the effects of diagnostic timing (2014) BMC Neurol, 14, p. 101; Barry, R.J., De Blasio, F.M., Borchard, J.P., Sequential processing in the equiprobable auditory Go/NoGo task: children vs. adults (2014) Clin Neurophysiol, 125, pp. 1995-2006; Başar, E., Başar-Eroğlu, C., Karakaş, S., Schürmann, M., Γ, α, δ, and thet aoscillations govern cognitive processes (2001) Int J Psychophysiol, 39, pp. 241-248; Başar, E., Emek-Savaş, D.D., Güntekin, B., Yener, G.G., Delay of cognitive γ responses in Alzheimer's disease (2016) Neuroimage Clin, 11, pp. 106-115; Başar, E., Güntekin, B., A short review of α activity in cognitive processes and in cognitive impairment (2012) Int J Psychophysiol, 86, pp. 25-38; Başar, E., Tülay, E., Güntekin, B., Multiple γ oscillations in the brain: A new strategy to differentiate functional correlates and P300 dynamics (2015) Int J Psychophysiol, 95, pp. 406-420; Başar, E., A review of α activity in integrative brain function: fundamental physiology, sensory coding, cognition and pathology (2012) Int J Psychophysiol, 86, pp. 1-24; Başar, E., A review of γ oscillations in healthy subjects and in cognitive impairment (2013) Int J Psychophysiol, 90, pp. 99-117; Başar, E., Brain function and oscillations. I. Brain oscillations: principles and approaches (1998), Springer Berlin, Heidelberg; Başar, E., Brain function and oscillations. II. Integrative brain function. Neurophysiology and cognitive processes (1999), Springer Berlin, Heidelberg; Başar, E., EEG–brain dynamics. Relation between EEG and brain evoked potentials (1980), Elsevier Amsterdam; Başar-Eroglu, C., Strüber, D., Schürmann, M., Stadler, M., Başar, E., Γ-band responses in the brain: a short review of psychophysiological correlates and functional significance (1996) Int J Psychophysiol, 24, pp. 101-112; Basser, P.J., Jones, D.K., Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review (2002) NMR Biomed, 15, pp. 456-467; Bennys, K., Portet, F., Touchon, J., Rondouin, G., Diagnostic value of event-related evoked potentials N200 and P300 subcomponents in early diagnosis of Alzheimer's disease and mild cognitive impairment (2007) J Clin Neurophysiol, 24, pp. 405-412; Bertram, L., Tanzi, R.E., Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses (2008) Nat Rev Neurosci, 9, pp. 768-778; Besthorn, C., Sattel, H., Geiger-Kabisch, C., Zerfass, R., Förstl, H., Parameters of EEG dimensional complexity in Alzheimer's disease (1995) Electroencephalogr Clin Neurophysiol, 95, pp. 84-89; Blackwood, D.H., Muir, W.J., Cognitive brain potentials and their application (1990) Br J Psychiatry, suppl, pp. 96-101; Blennow, K., de Leon, M.J., Zetterberg, H., Alzheimer's disease (2006) Lancet, 368, pp. 387-403; Blennow, K., Hampel, H., Weiner, M., Zetterberg, H., Cerebrospinal fluid and plasma biomarkers in Alzheimer disease (2010) Nat Rev Neurol, 6, pp. 131-144; Boccaletti, S., Valladares, D.L., Pecora, L.M., Geffert, H.P., Carroll, T., Reconstructing embedding spaces of coupled dynamical systems from multivariate data (2002) Phys Rev E Stat Nonlin Soft Matter Phys, 65. , 035204; Bohnen, N.I., Djang, D.S., Herholz, K., Anzai, Y., Minoshima, S., Effectiveness and safety of 18F-FDG PET in the evaluation of dementia: a review of the recent literature (2012) J Nucl Med, 53, pp. 59-71; Bozzali, M., Dowling, C., Serra, L., Spanò, B., Torso, M., Marra, C., The impact of cognitive reserve on brain functional connectivity in Alzheimer's disease (2015) J Alzheimers Dis, 44, pp. 243-250; Bozzali, M., Filippi, M., Magnani, G., Cercignani, M., Franceschi, M., Schiatti, E., The contribution of voxel-based morphometry in staging patients with mild cognitive impairment (2006) Neurology, 67, pp. 453-460; Bozzali, M., Giulietti, G., Basile, B., Serra, L., Spanò, B., Perri, R., Damage to the cingulum contributes to Alzheimer's disease pathophysiology by deafferentation mechanism (2012) Hum Brain Mapp, 33, pp. 1295-1308; Bozzali, M., Parker, G.J., Serra, L., Embleton, K., Gili, T., Perri, R., Anatomical connectivity mapping: a new tool to assess brain disconnection in Alzheimer's disease (2011) Neuroimage, 54, pp. 2045-2051; Bozzali, M., Parker, G.J., Spanò, B., Serra, L., Giulietti, G., Perri, R., Brain tissue modifications induced by cholinergic therapy in Alzheimer's disease (2013) Hum Brain Mapp, 34, pp. 3158-3167; Bozzali, M., Serra, L., Cercignani, M., Quantitative MRI to understand Alzheimer's disease pathophysiology (2016) Curr Opin Neurol, 29, pp. 437-444; Breakspear, M., Dynamic models of large-scale brain activity (2017) Nat Neurosci, 20, pp. 340-352; Breitner, J.C.S., Wyse, B.W., Anthony, J.C., APOE-ε4 count predicts age when prevalence of AD increases, then declines. The cache county study (1999) Neurology, 53, p. 321; Bruni, A.C., Bernardi, L., Colao, R., Rubino, E., Smirne, N., Frangipane, F., Worldwide distribution of PSEN1 Met146Leu mutation: a large variability for a founder mutation (2010) Neurology, 74, pp. 798-806; Brunia, C.H., Neural aspects of anticipatory behavior. Neural aspects of anticipatory behavior (1999) Acta Psychol (Amst), 101, pp. 213-242; Brys, M., Pirraglia, E., Rich, K., Rolstad, S., Mosconi, L., Switalski, R., Prediction and longitudinal study of CSF biomarkers in mild cognitive impairment (2009) Neurobiol Aging, 30, pp. 682-690; Buzsaki, G., Draguhn, A., Neuronal oscillations in cortical networks (2004) Science, 304, pp. 1926-1929; Buzsaki, G., Schomburg, E.W., What does γ coherence tell us about inter-regional neural communication? (2015) Nat Neurosci, 18, pp. 484-489; Buzsaki, G., Neuroscience: neurons and navigation (2005) Nature, 436, pp. 781-782; Canuet, L., Ishii, R., Pascual-Marqui, R.D., Iwase, M., Kurimoto, R., Aoki, Y., Resting-state EEG source localization and functional connectivity in schizophrenia-like psychosis of epilepsy (2011) PLoS ONE, 6. , e27863; Canuet, L., Tellado, I., Couceiro, V., Fraile, C., Fernandez-Novoa, L., Ishii, R., Resting-state network disruption and APOE genotype in Alzheimer's disease: a lagged functional connectivity study (2012) PLoS ONE, 7. , e46289; Caravaglios, G., Castro, G., Costanzo, E., Di Maria, G., Mancuso, D., Muscoso, E.G., Θ power responses in mild Alzheimer's disease during an auditory oddball paradigm:lack of θ enhancement during stimulus processing (2010) J Neural Transm, 117, pp. 1195-1208; Caravaglios, G., Costanzo, E., Palermo, F., Muscoso, E.G., Decreased amplitude of auditory event-related δ responses in Alzheimer's disease (2008) Int J Psychophysiol, 70, pp. 23-32; Cassani, R., Falk, T.H., Fraga, F.J., Cecchi, M., Moore, D.K., Anghinah, R., Towards automated electroencephalography-based Alzheimer ’ s disease diagnosis using portable low-density devices (2017) Biomed Signal Process Control, 33, pp. 261-271; Cassani, R., Falk, T.H., Fraga, F.J., Kanda, P.A.M., Anghinah, R., The effects of automated artifact removal algorithms on electroencephalography-based Alzheimer's disease diagnosis (2014) Front Aging Neurosci, 6, p. 55; Cerami, C., Dubois, B., Boccardi, M., Monsch, A., Demonet, J., Cappa, S., The geneva task force for the roadmap of Alzheimer's biomarkers, clinical validity of delayed recall tests as a gateway-biomarker for Alzheimer's disease in the context of a structured 5-phase development framework (2017) Neurobiol Aging, 52, pp. 153-166; Chapman, R.M., McCrary, J.W., Gardner, M.N., Sandoval, T.C., Guillily, M.D., Reilly, L.A., Brain ERP components predict which individuals progress to Alzheimer's disease and which do not (2011) Neurobiol Aging, 32, pp. 1742-1755; Chiu, M.J., Chen, Y.F., Chen, T.F., Yang, S.Y., Yang, F.P., Tseng, T.W., Plasma tau as a window to the brain-negative associations with brain volume and memory function in mild cognitive impairment and early Alzheimer's disease (2014) Hum Brain Mapp, 35, pp. 3132-3142; Chiu, M.J., Yang, S.Y., Horng, H.E., Yang, C.C., Chen, T.F., Chieh, J.J., Combined plasma biomarkers for diagnosing mild cognition impairment and Alzheimer's disease (2013) ACS Chem Neurosci, 4, pp. 1530-1536; Clark, C.M., Xie, S., Chittams, J., Ewbank, D., Peskind, E., Galasko, D., Cerebrospinal fluid tau and beta-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? (2003) Arch Neurol, 60, pp. 1696-1702; Conidi, M.E., Bernardi, L., Puccio, G., Smirne, N., Muraca, M.G., Curcio, S.A., Homozygous carriers of APP A713T mutation in an autosomal dominant Alzheimer disease family (2015) Neurology, 84, pp. 2266-2273; Coronel, C., Garn, H., Waser, M., Deistler, M., Benke, T., Dal-Bianco, P., Quantitative EEG markers of entropy and auto mutual information in relation to MMSE scores of probable Alzheimer's disease patients (2017) Entropy, 19, p. 130; Costa, A., Bak, T., Caffarra, P., Caltagirone, C., Ceccaldi, M., Collette, F., The need for harmonisation and innovation of neuropsychological assessment in neurodegenerative dementias in Europe: consensus document of the Joint program for neurodegenerative diseases working group (2017) Alzheimers Res Ther, 9, p. 27; Costa, M., Goldberger, A.L., Peng, C.K., Multiscale entropy analysis of biological signals (2005) Phys Rev E Stat Nonlin Soft Matter Phys, 71, p. 21906; Courtiol, J., Perdikis, D., Petkoski, S., Müller, V., Huys, R., Sleimen-Malkoun, R., The multiscale entropy: Guidelines for use and interpretation in brain signal analysis (2016) J Neurosci Methods, 273, pp. 175-190; Crutch, S.J., Schott, J.M., Rabinovici, G.D., Murray, M., Snowden, J.S., van der Flier, W.M., Consensus classification of posterior cortical atrophy (2017) Alzheimers Dement, 13, pp. 870-884; Cummings, J.L., Mega, M., Gray, K., Rosemberg-Thompson, S., Carusi, D.A., Gornbei, J., The neuropsychiatric inventory: comprehensive assessment of psychopathology in dementia (1994) Neurology, 44, pp. 2308-2314; Cummings, J.L., Miller, B.L., Christensen, D.D., Cherry, D., Creativity and dementia: emerging diagnostic and treatment methods for Alzheimer's disease (2008) CNS Spectr, 13, pp. 1-20; Cummins, T.D., Broughton, M., Finnigan, S., Θ oscillations are affected by amnestic mild cognitive impairment and cognitive load (2008) Int J Psychophysiol, 70, pp. 75-81; D'Amelio, M., Rossini, P.M., Brain excitability and connectivity of neuronal assemblies in Alzheimer's disease: from animal models to human findings (2012) Prog Neurobiol, 99, pp. 42-60; Dauwels, J., Vialatte, F., Cichocki, A., Diagnosis of Alzheimer's disease from EEG signals: where are we standing? (2010) Curr Alzheimer Res, 7, pp. 487-505; Dauwels, J., Vialatte, F., Musha, T., Cichocki, A., A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG (2010) Neuroimage, 49, pp. 668-693; de Haan, W., Mott, K., van Straaten, E.C., Scheltens, P., Stam, J.C., Activity dependent degeneration explains hub vulnerability in Alzheimer's disease (2012) PLoS Comput Biol, 8. , e1002582; de Haan, W., Pijnenburg, Y.A., Strijers, R.L., van der Made, Y., van der Flier, W.M., Scheltens, P., Functional neural network analysis in frontotemporal dementia and Alzheimer's disease using EEG and graph theory (2009) BMC Neurosci, 10, p. 101; de Haan, W., van der Flier, W.M., Koene, T., Smits, L.L., Scheltens, P., Stam, C.J., Disrupted modular brain dynamics reflect cognitive dysfunction in Alzheimer's disease (2012) Neuroimage, 59, pp. 3085-3093; de Leon, M.J., DeSanti, S., Zinkowski, R., Mehta, P.D., Pratico, D., Segal, S., Longitudinal CSF and MRI biomarkers improve the diagnosis of mild cognitive impairment (2006) Neurobiol Aging, 27, pp. 394-401; Deiber, M., Iba, V., Missonnier, P., Abnormal-induced θ activity supports early directed-attention network deficits in progressive MCI (2009) Neurobiol Aging, 30, pp. 1444-1452; Deiber, M.P., Meziane, H.B., Hasler, R., Rodriguez, C., Toma, S., Ackermann, M., Attention and working memory-related EEG markers of subtle cognitive deterioration in healthy elderly individuals (2015) J Alzheimers Dis, 47, pp. 335-349; Delorme, A., Makeig, S., EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis (2004) J Neurosci Methods, 134, pp. 9-21; Deng, B., Cai, L., Li, S., Wang, R., Yu, H., Chen, Y., Multivariate multi-scale weighted permutation entropy analysis of EEG complexity for Alzheimer's disease (2017) Cogn Neurodyn, 11, pp. 217-231; Dierckx, E., Engelborghs, S., De Raedt, R., Van Buggenhout, M., De Deyn, P., Verté, D., Verbal cued recall as a predictor of conversion to Alzheimer's disease in mild cognitive impairment (2009) Int J Geriatr Psychiatry, 24, pp. 1094-1100; Dierks, T., Ihl, R., Frölich, L., Maurer, K., Dementia of the Alzheimer type: effects on the spontaneous EEG described by dipole sources (1993) Psychiatry Res, 50, pp. 151-162; Diniz, B.S., Pinto Junior, J.A., Forlenza, O.V., Do CSF total tau, phosphorylated tau, and beta-amyloid 42 help to predict progression of mild cognitive impairment to Alzheimer's disease? A systematic review and meta-analysis of the literature (2008) World J Biol Psychiatry, 9, pp. 172-182; Dubois, B., Feldman, H.H., Jacova, C., Cummings, J.L., Dekosky, S.T., Barberger-Gateau, P., Revising the definition of Alzheimer's disease: a new lexicon (2010) Lancet Neurol, 9, pp. 1118-1127; Dubois, B., Feldman, H.H., Jacova, C., Dekosky, S.T., Barberger-Gateau, P., Cummings, J., Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria (2007) Lancet Neurol, 6, pp. 734-746; Dubois, B., Feldman, H.H., Jacova, C., Hampel, H., Molinuevo, J.L., Blennow, K., Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria (2014) Lancet Neurol, 13, pp. 614-629; Dubois, B., Hampel, H., Feldman, H.H., Scheltens, P., Aisen, P., Andrieu, S., Preclinical Alzheimer's disease: Definition, natural history, and diagnostic criteria (2016) Alzheimers Dement, 12, pp. 292-323; Dubois, B., Touchon, J., Portet, F., Ousset, P., Vellas, B., Michel, B., “ The 5 words”: a simple and sensitive test for the diagnosis of Alzheimer's disease (2002) Presse Med, 31, pp. 1696-1699; Dujardin, K., Bourriez, J.L., Guieu, J.D., Event-related desynchronization (ERD) patterns during verbal memory tasks: effect of age (1994) Int J Psychophysiol, 16, pp. 17-27; Dujardin, K., Bourriez, J.L., Guieu, J.D., Event-related desynchronization (ERD) patterns during memory processes: effects of aging and task difficulty (1995) Electroencephalogr Clin Neurophysiol, 96, pp. 169-182; Duncan-Johnson, C.C., P300 latency: a new metric of information processing (1981) Psychophysiology, 18, pp. 207-215; Economou, A., Routsis, C., Papageorgiou, S.G., Episodic memory in Alzheimer disease, frontotemporal dementia, and dementia with Lewy bodies/Parkinson disease dementia: disentangling retrieval from consolidation (2016) Alzheimer Dis Assoc Disord, 30, pp. 47-52; Engel, A.K., Fries, P., Β-band oscillations–signalling the status quo? (2010) Curr Opin Neurobiol, 20, pp. 156-165; Escudero, J., Abasolo, D., Hornero, R., Espino, P., Lopez, M., Analysis of electroencephalograms in Alzheimer's disease patients with multiscale entropy (2006) Physiol Meas, 27, pp. 1091-1106; Escudero, J., Ibanez-Molina, A., Iglesias-Parro, S., Effect of the average delay and mean connectivity of the Kuramoto model on the complexity of the output electroencephalograms (2015) Conf Proc IEEE Eng Med Biol Soc, 2015, pp. 7873-7876; Esteller, R., Vachtsevanos, G., Echauz, J., Litt, B., A comparison of waveform fractal dimension algorithms (2011) IEEE Trans Circuits Syst Fundam Theory Appl, 48, pp. 177-183; Faes, L., Porta, A., Nollo, G., Information decomposition in bivariate systems: theory and application to cardiorespiratory dynamics (2015) Entropy, 17, pp. 277-303; Fagan, A.M., Roe, C.M., Xiong, C., Mintun, M.A., Morris, J.C., Holtzman, D.M., Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in non demented older adults (2007) Arch Neurol, 64, pp. 343-349; Fagan, A.M., Shaw, L.M., Xiong, C., Vanderstichele, H., Mintun, M.A., Trojanowski, J.Q., Comparison of analytical platforms for cerebrospinal fluid measures of beta-amyloid 1–42, total tau, and p- tau181 for identifying Alzheimer disease amyloid plaque pathology (2011) Arch Neurol, 68, pp. 1137-1144; Falk, T.H., Fraga, F.J., Trambaiolli, L., Anghinah, R., Open Access EEG amplitude modulation analysis for semi-automated diagnosis of Alzheimer ’s disease (2012) J Adv Signal Process, 2012, p. 192; Fazekas, F., Chawluk, J.B., Alvavi, A., Hurtig, H.I., Zimmerman, R.A., MR signal abnormalities at 1.5T in Alzheimer's disease and normal aging (1987) AJR Am J Roentgenol, 149, pp. 351-356; Ferreri, F., Pauri, F., Pasqualetti, P., Fini, R., Dal Forno, G., Rossini, P.M., Motor cortex excitability in Alzheimer's disease: a transcranial magnetic stimulation study (2003) Ann Neurol, 53, pp. 102-108; Ferreri, F., Vecchio, F., Ponzo, D., Pasqualetti, P., Rossini, P.M., Time-varying coupling of EEG oscillations predicts excitability fluctuations in the primary motor cortex as reflected by motor evoked potentials amplitude: An EEG-TMS study (2014) Hum Brain Mapp, 35, pp. 1969-1980; Fjell, A., Walhovd, K., P300 and neuropsychological tests as measures of aging: scalp topography and cognitive changes (2001) Brain Topogr, 14, pp. 25-40; Fraga, F.J., Falk, T.H., Trambaiolli, L.R., Oliveira, E.F., Walter, H.L., Federal, U., Towards an EEG-based biomarker for Alzheimer's disease: Improving amplitude modulation analysis features (2013) Proc IEEE Int Conf Acoust Speech Signal Process, pp. 1207-1211; Fraga, F.J., Ferreira, L.A., Falk, T.H., Johns, E., Phillips, N.D., Event-related synchronisation responses to N-back memory tasks discriminate between healthy ageing, mild cognitive impairment, and mild Alzheimer's disease (2017) Proc IEEE Int Conf Acoust Speech Signal Process, pp. 964-968; Fries, P., A mechanism for cognitive dynamics: neuronal communication through neuronal coherence (2005) Trends Cogn Sci, 9, pp. 474-480; Fuentemilla, L., Marco-Pallarés, J., Grau, C., Modulation of spectral power and of phase resetting of EEG contributes differentially to the generation of auditory event-related potentials (2006) Neuroimage, 30, pp. 909-916; Galasko, D., Chang, L., Motter, R., Clark, C.M., Kaye, J., Knopman, D., High cerebrospinal fluid tau and low amyloid beta42 levels in the clinical diagnosis of Alzheimer disease and relation to apolipoprotein E genotype (1998) Arch Neurol, 55, pp. 937-945; Garn, H., Waser, M., Deistler, M., Benke, T., Dal-Bianco, P., Ransmayr, G., Quantitative EEG markers relate to Alzheimer's disease severity in the Prospective Dementia Registry Austria (PRODEM) (2015) Clin Neurophysiol, 126, pp. 505-513; Geldmacher, D.S., Cost-effectiveness of drug therapies for Alzheimer's disease: A brief review (2008) Neuropsychiatr Dis Treat, 4, pp. 549-555; Getsios, D., Blume, S., Ishak, K.J., Maclaine, G., Hernández, L., An economic evaluation of early assessment for Alzheimer's disease in the United Kingdom (2012) Alzheimers Dement, 8, pp. 22-30; Gevins, A., Smith, M.E., McEvoy, L., Yu, D., High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice (1997) Cereb Cortex, 7, pp. 374-385; Gevins, A., Smith, M.E., Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style (2000) Cereb Cortex, 10, pp. 829-839; Giannakopoulos, P., Missonnier, P., Kövari, E., Gold, G., Michon, A., Electrophysiological markers of rapid cognitive decline in mild cognitive impairment (2009) Front Neurol Neurosci, 24, pp. 39-46; Gianotti, L.R., Künig, G., Lehmann, D., Faber, P.L., Pascual-Marqui, R.D., Kochi, K., Correlation between disease severity and brain electric LORETA tomography in Alzheimer's disease (2007) Clin Neurophysiol, 118, pp. 186-196; Gili, T., Cercignani, M., Serra, L., Perri, R., Giove, F., Maraviglia, B., Regional brain atrophy and functional disconnection across Alzheimer's disease evolution (2011) J Neurol Neurosurg Psychiatry, 82, pp. 58-66; Giri, M., Zhang, M., Lu, Y., Genes associated with Alzheimer's disease: an overview and current status (2016) Clin Interv Aging, 11, pp. 665-681; Goate, A., Chartier-Harlin, M.C., Mullan, M., Brown, J., Crawford, F., Fidani, L., Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease (1991) Nature, 349, pp. 704-706; Golby, A., Silverberg, G., Race, E., Gabrieli, S., O'Shea, J., Knierim, K., Memory encoding in Alzheimer's disease: an fMRI study of explicit and implicit memory (2005) Brain, 128, pp. 773-787; Goldberger, A.L., Amaral, L.A.N., Hausdorff, J.M., Ivanov, P.C., Peng, C.K., Stanley, H.E., Fractal dynamics in physiology: Alterations with disease and aging (2002) Proc Natl Acad Sci USA, 99, pp. 2466-2472; Gonsalvez, C.J., Polich, J., P300 amplitude is determined by target-to-target interval (2002) Psychophysiology, 39, pp. 388-396; Goodman, M.S., Kumar, S., Zomorrodi, R., Ghazala, Z., Cheam, A., Barr, M.S., Theta-gamma coupling and working memory in Alzheimer's dementia and mild cognitive impairment (2018) Front Aging Neurosci, 10, p. 101; Gorno-Tempini, M.L., Hillis, A.E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S., Classification of primary progressive aphasia and its variants (2011) Neurology, 76, pp. 1006-1014; Gramfort, A., Luessi, M., Larson, E., Engemann, D.A., Strohmeier, D., Brodbeck, C., MEG and EEG data analysis with MNE-Python (2013) Front Neurosci, 7, p. 267; Grande, G., Vanacore, N., Vetrano, D.L., Cova, I., Rizzuto, D., Mayer, F., Free and cued selective reminding test predicts progression to Alzheimer's disease in people with mild cognitive impairment (2018) Neurol Sci, 39, pp. 1867-1875; Grassberger, P., Procaccia, I., Measuring the strangeness of strange attractors (1983) Phys Nonlinear Phenom, 9, pp. 189-208; Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V., Functional connectivity in the resting brain: a network analysis of the default mode hypothesis (2003) Proc Natl Acad Sci USA, 100, pp. 253-258; Grober, E., Buschke, H., Genuine memory deficits in dementia (1987) Dev Neuropsychol, 3, pp. 13-36; Güntekin, B., Başar, E., A review of brain oscillations in perception of faces and emotional pictures (2014) Neuropsychologia, 58, pp. 33-51; Güntekin, B., Başar, E., Review of evoked and event-related δ responses in the human brain (2016) Int J Psychophysiol, 103, pp. 43-52; Güntekin, B., Emek-Savaş, D.D., Kurt, P., Yener, G.G., Başar, E., Β oscillatory responses in healthy subjects and subjects with mild cognitive impairment (2013) Neuroimage Clin, 3, pp. 39-46; Hämäläinen, M.S., Ilmoniemi, R.J., Interpreting magnetic fields of the brain: minimum norm estimates (1994) Med Biol Eng Comput, 32, pp. 35-42; Hansson, O., Zetterberg, H., Buchhave, P., Londos, E., Blennow, K., Minthon, L., Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study (2006) Lancet Neurol, 5, pp. 228-234; Hardy, J., Selkoe, D.J., The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics (2002) Science, 297, pp. 353-356; Heaton, R.K., Chelune, G.J., Talley, J.L., Kay, G.G., Curtiss, G., Wisconsin card sorting test manual: revised and expanded (1993), Psychological Assessment Resources Odessa, FL; Hedges, D., Janis, R., Mickelson, S., Keith, C., Bennett, D., Brown, B.L., P300 amplitude in Alzheimer's disease: a meta-analysis and meta-regression (2016) Clin EEG Neurosci, 47, pp. 48-55; Henderson, G., Ifeachor, E., Hudson, N., Goh, C., Outram, N., Wimalaratna, S., Development and assessment of methods for detecting dementia using the human electroencephalogram (2006) IEEE Trans Biomed Eng, 53, pp. 1557-1568; Herrmann, C.S., Munk, M.H., Engel, A.K., Cognitive functions of γ-band activity:memory match and utilization (2004) Trends Cogn Sci, 8, pp. 347-355; Herukka, S.K., Simonsen, A.H., Andreasen, N., Baldeiras, I., Bjerke, M., Blennow, K., Recommendations for cerebrospinal fluid Alzheimer's disease biomarkers in the diagnostic evaluation of mild cognitive impairment (2017) Alzheimers Dement, 13, pp. 285-295; Higuchi, T., Approach to an irregular time series on the basis of the fractal theory (1988) Phys Nonlinear Phenom, 31, pp. 277-283; Hogan, D.B., Bailey, P., Black, S., Carswell, A., Chertkow, H., Clarke, B., Diagnosis and treatment of dementia: 5. Nonpharmacologic and pharmacologic therapy for mild to moderate dementia (2008) CMAJ, 179, pp. 1019-1026; Hornero, R., Abásolo, D., Escudero, J., Gómez, C., Nonlinear analysis of electroencephalogram and magnetoencephalogram recordings in patients with Alzheimer's disease (2009) Philos Trans R Soc Math Phys Eng Sci, 367, pp. 317-336; Hort, J., O'Brien, J.T., Gainotti, G., Pirttila, T., Popescu, B.O., Rektorova, I., EFNS guidelines for the diagnosis and management of Alzheimer's disease (2010) Eur J Neurol, 17, pp. 1236-1248; Horvath, A., Szucs, A., Csukly, G., Sakovics, A., Stefanics, G., Kamondi, A., EEG and ERP biomarkers of Alzheimer's disease: a critical review (2018) Front Biosci, 23, pp. 183-220; Howe, A.S., Bani-Fatemi, A., De Luca, V., The clinical utility of the auditory P300 latency subcomponent event-related potential in preclinical diagnosis of patients with mild cognitive impairment and Alzheimer's disease (2014) Brain Cogn, 86, pp. 64-74; Hsiao, F.J., Wang, Y.J., Yan, S.H., Chen, W.T., Lin, Y.Y., Altered oscillation and synchronization of default-mode network activity in mild Alzheimer's disease compared to mild cognitive impairment: an electrophysiological study (2013) PLoS ONE, 8. , e68792; Huang, C., Wahlund, L., Dierks, T., Julin, P., Winblad, B., Jelic, V., Discrimination of Alzheimer's disease and mild cognitive impairment by equivalent EEG sources: a cross-sectional and longitudinal study (2000) Clin Neurophysiol, 111, pp. 1961-1967; Huang, Y., Mucke, L., Alzheimer mechanisms and therapeutic strategies (2012) Cell, 148, pp. 1204-1222; Huber, W., Weniger, D., Poeck, K., Willmes, K., The Aachen Aphasia Test Rationale and construct validity (author's translation) (1980) Der Nervenarzt, 51, pp. 475-482; Humeau-Heurtier, A., The multiscale entropy algorithm and its variants: a review (2015) Entropy, 17, pp. 3110-3123; Hyvarinen, A., Karhunen, J., Oja, E., Independent component analysis (2001), USA, Wiley New York; Iaccarino, L., Chiotis, K., Alongi, P., Almkvist, O., Wall, A., Cerami, C., A cross-validation of FDG- and amyloid-PET biomarkers in mild cognitive impairment for the risk prediction to dementia due to alzheimer's disease in a clinical setting (2017) J Alzheimers Dis, 59, pp. 603-614; Ibanez-Molina, A.J., Iglesias-Parro, S., Escudero, J., Differential effects of simulated cortical network lesions on synchrony and EEG complexity (2019) Int J Neur Syst, 29, p. 1850024; Ikeda, S., Mizuno-Matsumoto, Y., Canuet, L., Ishii, R., Aoki, Y., Hata, M., Emotion regulation of neuroticism: emotional information processing related to psychosomatic state evaluated by electroencephalography and exact low-resolution brain electromagnetic tomography (2015) Neuropsychobiology, 71, pp. 34-41; Ilan, A.B., Polich, J., P300 and response time from a manual Stroop task (1999) Clin Neurophysiol, 110, pp. 367-373; Jack, C.R., Jr., Bennett, D.A., Blennow, K., Carrillo, M.C., Dunn, B., Haeberlein, S.B., NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease (2018) Alzheimers Dement, 14, pp. 535-562; Jack, C.R., Jr., Wiste, H.J., Weigand, S.D., Therneau, T.M., Knopman, D.S., Lowe, V., Age-specific and sex-specific prevalence of cerebral β-amyloidosis, tauopathy, and neurodegeneration in cognitively unimpaired individuals aged 50-95 years: a cross-sectional study (2017) Lancet Neurol, 16, pp. 435-444; Jelic, V., Johansson, S.E., Almkvist, O., Shigeta, M., Julin, P., Nordberg, A., Quantitative electroencephalography in mild cognitive impairment: longitudinal changes and possible prediction of Alzheimer's disease (2000) Neurobiol Aging, 21, pp. 533-540; Jelles, B., van Birgelen, J.H., Slaets, J.P., Hekster, R.E., Jonkman, E.J., Stam, C.J., Decrease of non-linear structure in the EEG of Alzheimer patients compared to healthy controls (1999) Clin Neurophysiol, 110, pp. 1159-1167; Jensen, O., Kaiser, J., Lachaux, J.P., Human γ-frequency oscillations associated with attention and memory (2007) Trends Neurosci, 30, pp. 317-324; Jeong, J., EEG dynamics in patients with Alzheimer's disease (2004) Clin Neurophysiol, 115, pp. 1490-1505; Jiang, S., Qu, C., Wang, F., Liu, Y., Qiao, Z., Qiu, X., Using event-related potential P300 as an electrophysiological marker for differential diagnosis and to predict the progression of mild cognitive impairment: a meta-analysis (2015) Neurol Sci, 36, pp. 1105-1112; Juckel, G., Clotz, F., Frodl, T., Kawohl, W., Hampel, H., Pogarell, O., Diagnostic usefulness of cognitive auditory event-related p300 subcomponents in patients with Alzheimers disease? (2008) J Clin Neurophysiol, 25, pp. 147-152; Jung, T.P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., Sejnowski, T.J., Analysis and visualization of single-trial event-related potentials (2001) Hum Brain Mapp, 14, pp. 166-185; Kaiser, J., Heidegger, T., Lutzenberger, W., Behavioral relevance of γ-band activity for short-term memory-based auditory decision-making (2008) Eur J Neurosci, 27, pp. 3322-3328; Kaplan, E., The assessment of aphasia and related disorders (1983), Lippincott Williams & Wilkins; Karlstrom, H., Brooks, W.S., Kwok, J.B., Broe, G.A., Kril, J.J., McCann, H., Variable phenotype of Alzheimer's disease with spastic paraparesis (2008) J Neurochem, 104, pp. 573-583; Karrasch, M., Laine, M., Rinne, J.O., Rapinoja, P., Sinervä, E., Krause, C.M., Brain oscillatory responses to an auditory-verbal working memory task in mild cognitive impairment and Alzheimer's disease (2006) Int J Psychophysiol, 59, pp. 168-178; Kato, T., Inui, Y., Nakamura, A., Ito, K., Brain fluorodeoxyglucose (FDG) PET in dementia (2016) Ageing Res Rev, 30, pp. 73-84; Katz, M.J., Fractals and the analysis of waveforms (1988) Comput Biol Med, 18, pp. 145-156; Keil, A., Müller, M.M., Ray, W.J., Gruber, E.T., Human γ band activity and perception of a gestalt (1999) J Neurosci, 19, pp. 7152-7161; Kertesz, A., Davidson, W., Fox, H., Frontal behavioral inventory: diagnostic criteria for frontal lobe dementia (1997) Can J Neurol Sci, 24, pp. 29-36; Klass, D.W., Brenner, R.P., Electroencephalography of the elderly (1995) J Clin Neurophysiol, 12, pp. 116-131; Klimesch, W., Doppelmayr, M., Schimke, H., Ripper, B., Θ synchronization and α desynchronization in a memory task (1997) Psychophysiology, 34, pp. 169-176; Klimesch, W., EEG α and θ oscillations reflect cognitive and memory performance: a review and analysis (1999) Brain Res Rev, 29, pp. 169-195; Knopman, D.S., Diagnostic tests for Alzheimer disease: FDG-PET imaging is a player in search of a role (2012) Neurol Clin Pract, 2, pp. 151-153; Kobayashi, N., Shinagawa, S., Nagata, T., Shimada, K., Shibata, N., Ohnuma, T., Usefulness of DNA methylation levels in COASY and SPINT1 gene promoter regions as biomarkers in diagnosis of alzheimer's disease and amnestic mild cognitive impairment (2016) PLoS ONE, 11. , e0168816; Koch, G., Bonnì, S., Pellicciari, M.C., Casula, E.P., Mancini, M., Esposito, R., Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer's disease (2018) Neuroimage, 169, pp. 302-311; Koenig, T., Prichep, L., Dierks, T., Hubl, D., Wahlund, L.O., John, E.R., Decreased EEG synchronization in Alzheimer's disease and mild cognitive impairment (2005) Neurobiol Aging, 26, pp. 165-171; Kouzuki, M., Asaina, F., Taniguchi, M., Musha, T., Urakami, K., The relationship between the diagnosis method of neuronal dysfunction (DIMENSION) and brain pathology in the early stages of Alzheimer's disease (2013) Psychogeriatrics, 13, pp. 63-70; Kubicki, S., Herrmann, W.M., Fichte, K., Freund, G., Reflections on the topics: EEG frequency bands and regulation of vigilance (1979) Pharmakopsychiatr Neuropsychopharmakol, 12, pp. 237-245; Kuhle, J., Barro, C., Andreasson, U., Derfuss, T., Lindberg, R., Sandelius, A., Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa (2016) Clin Chem Lab Med, 54, pp. 1655-1661; Kurimoto, R., Ishii, R., Canuet, L., Ikezawa, K., Iwase, M., Azechi, M., NeuroImage Induced oscillatory responses during the Sternberg's visual memory task in patients with Alzheimer's disease and mild cognitive impairment (2012) Neuroimage, 59, pp. 4132-4140; Kurt, P., Emek-Savaş, D.D., Batum, K., Turp, B., Güntekin, B., Karşıdağ, S., Patients with mild cognitive impairment display reduced auditory event-related δ oscillatory responses (2014) Behav Neurol, 2014. , 268967; Labate, D., Foresta, F.L., Morabito, G., Palamara, I., Morabito, F.C., Entropic measures of EEG complexity in Alzheimer's disease through a multivariate multiscale approach (2013) IEEE Sens J, 13, pp. 3284-3292; Latora, V., Marchiori, M., Efficient behavior of small-world networks (2001) Phys Rev Lett, 87. , 198701; Lee, M.S., Lee, S.H., Moon, E.O., Moon, Y.J., Kim, S., Kim, S.H., Neuropsychological correlates of the P300 in patients with Alzheimer's disease (2013) Prog Neuropsychopharmacol Biol Psychiatry, 40, pp. 62-69; Lenzi, D., Serra, L., Perri, R., Pantano, P., Lenzi, G.L., Paulesu, E., Single domain amnestic MCI: a multiple cognitive domains fMRI investigation (2011) Neurobiol Aging, 32, pp. 1542-1557; Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D.M., Oshima, J., Pettingell, W.H., Candidate gene for the chromosome 1 familial Alzheimer's disease locus (1995) Science, 269, pp. 973-977; Lewczuk, P., Ermann, N., Andreasson, U., Schultheis, C., Podhorna, J., Spitzer, P., Plasma neurofilament light as a potential biomarker of neurodegeneration in Alzheimer's disease (2018) Alzheimers Res Ther, 10, p. 71; Li, G., Sokal, I., Quinn, J.F., Leverenz, J.B., Brodey, M., Schellenberg, G.D., CSF tau/Abeta42 ratio for increased risk of mild cognitive impairment: a follow-up study (2007) Neurology, 69, pp. 631-639; Liu, C.C., Liu, C.C., Kanekiyo, T., Xu, H., Bu, G., Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy (2013) Nat Rev Neurol, 9, pp. 106-118; Liu, Y., Spulber, G., Lehtimäki, K.K., Könönen, M., Hallikainen, I., Gröhn, H., Diffusion tensor imaging and tract-based spatial statistics in Alzheimer's disease and mild cognitive impairment (2011) Neurobiol Aging, 32, pp. 1558-1571; Livingston, G., Sommerlad, A., Orgeta, V., Costafreda, S.G., Huntley, J., Ames, D., Dementia prevention, intervention, and care (2017) Lancet, 390, pp. 2673-2734; Lopes da Silva, F., EEG and MEG: relevance to neuroscience (2013) Neuron, 80, pp. 1112-1128; Luck, S.J., An introduction to the event-related potential technique (2014), The MIT Press; Makeig, S., Westerfield, M., Jung, T.P., Enghoff, S., Townsend, J., Courchesne, E., Dynamic brain sources of visual evoked responses (2002) Science, 295, pp. 690-694; Marnane, M., Al-Jawadi, O.O., Mortazavi, S., Pogorzelec, K.J., Wang, B.W., Feldman, H.H., Alzheimer's disease neuroimaging initiative. Periventricular hyperintensities are associated with elevated cerebral amyloid (2016) Neurology, 86, pp. 535-543; Matthews, F.E., Arthur, A., Barnes, L.E., Bond, J., Jagger, C., Robinson, L., A two-decade comparison of prevalence of dementia in individuals aged 65 years and older from three geographical areas of England: results of the cognitive function and ageing study I and II (2013) Lancet, 382, pp. 1405-1412; Matthews, F.E., Stephan, B.C., Robinson, L., Jagger, C., Barnes, L.E., Arthur, A., A two decade dementia incidence comparison from the cognitive function and ageing studies I and II (2016) Nat Commun, 7 (11398), p. 15; Mattsson, N., Zetterberg, H., Hansson, O., Andreasen, N., Parnetti, L., Jonsson, M., CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment (2009) JAMA, 302, pp. 385-393; McGinnis, S.M., Neuroimaging in neurodegenerative dementias (2012) Semin Neurol, 32, pp. 347-360; McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan, E.M., Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on alzheimer's disease (1984) Neurology, 34, pp. 939-944; McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack, C.R., Jr, Kawas, C.H., The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease (2011) Alzheimers Dement, 7, pp. 263-269; Miraglia, F., Vecchio, F., Bramanti, P., Rossini, P.M., EEG characteristics in “eyes-open” versus “eyes-closed” conditions: Small-world network architecture in healthy aging and age-related brain degeneration (2016) Clin Neurophysiol, 127, pp. 1261-1268; Miraglia, F., Vecchio, F., Bramanti, P., Rossini, P.M., Small-worldness characteristics and its gender relation in specific hemispheric networks (2015) Neuroscience, 310, pp. 1-11; Miraglia, F., Vecchio, F., Rossini, P.M., Searching for signs of aging and dementia in EEG through network analysis (2017) Behav Brain Res, 317, pp. 292-300; Missonnier, P., Deiber, M.P., Gold, G., Herrmann, F.R., Millet, P., Michon, A., Working memory load-related electroencephalographic parameters can differentiate progressive from stable mild cognitive impairment (2007) Neuroscience, 150, pp. 346-356; Morison, G., Tieges, Z., Kilborn, K., Analysis of electroencephalography activity in early stage alzheimer's disease using a multiscale statistical complexity measure (2013) Adv Sci Lett, 19, pp. 2414-2418; Mosher, J.C., Leahy, R.M., Source localization using recursively applied and projected (RAP) music (1999) IEEE Trans Signal Process, 47, pp. 332-340; Mosher, J.C., Lewis, P.S., Leahy, R.M., Multiple dipole modeling and localization from spatio-temporal MEG Data (1992) IEEE Trans Biomed Eng, 39, pp. 541-557; Mozaffarian, D., Benjamin, E.J., Go, A.S., Arnett, D.K., Blaha, M.J., Cushman, M., Heart disease and stroke statistics–2015 update: a report from the American Heart Association (2015) Circulation, 131, pp. e29-e322; Nakamura, A., Kaneko, N., Villemagne, V.L., Kato, T., Doecke, J., Dore, V., High performance plasma amyloid-beta biomarkers for Alzheimer's disease (2018) Nature, 554, pp. 249-254; Newman, M.E., Properties of highly clustered networks (2003) Phys Rev E Stat Nonlin Soft Matter Phys, 68. , 026121; Niedermeyer, E., da Silva, F.L., Electroencephalography: basic principles, clinical applications, and related fields (2005), Lippincott Williams & Wilkins; Nikolic, D., Fries, P., Singer, W., Γ oscillations: precise temporal coordination without a metronome (2013) Trends Cogn Sci, 17, pp. 54-55; Nishida, K., Yoshimura, M., Isotani, T., Yoshida, T., Kitaura, Y., Saito, A., Differences in quantitative EEG between frontotemporal dementia and Alzheimer's disease as revealed by LORETA (2011) Clin Neurophysiol, 122, pp. 1718-1725; Norton, S., Matthews, F.E., Barnes, D.E., Yaffe, K., Brayne, C., Potential for primary prevention of Alzheimer's disease: an analysis of population-based data (2014) Lancet Neurol, 13, pp. 788-794; Nunez, P.L., Srinivasan, R., A theoretical basis for standing and traveling brain waves measured with human EEG with implications for an integrated consciousness (2006) Clin Neurophysiol, 117, pp. 2424-2435; Olichney, J.M., Taylor, J.R., Gatherwright, J., Salmon, D.P., Bressler, A.J., Kutas, M., Patients with MCI and N400 or P600 abnormalities are at very high risk for conversion to dementia (2008) Neurology, 70, pp. 1763-1770; Olsson, B., Lautner, R., Andreasson, U., Ohrfelt, A., Portelius, E., Bjerke, M., CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis (2016) Lancet Neurol, 15, pp. 673-684; Onnela, J.P., Saramaki, J., Kertesz, J., Kaski, K., Intensity and coherence of motifs in weighted complex networks (2005) Phys Rev E Stat Nonlin Soft Matter Phys, 71. , 065103; Onton, J., Makeig, S., High-frequency broad band modulations of electro-encephalographic spectra (2009) Front Hum Neurosci, 23, pp. 3-61; Osipova, D., Pekkonen, E., Ahveninen, J., Enhanced magnetic auditory steady-state response in early Alzheimer's disease (2006) Clin Neurophysiol, 117, pp. 1990-1995; Ossenkoppele, R., Pijnenburg, Y.A., Perry, D.C., Cohn-Sheehy, B.I., Scheltens, N.M., Vogel, J.W., The behavioral/dysexecutive variant of Alzheimer's disease: clinical, neuroimaging and pathological features (2015) Brain, 138, pp. 2732-2749; Parra, M., Ascencio, L., Urquina, H., Manes, F., Ibanez, A., P300 and neuropsychological assessment in mild cognitive impairment and Alzheimer dementia (2012) Front Neurol, 3, p. 172; Pascual-Marqui, R.D., Lehmann, D., Koukkou, M., Kochi, K., Anderer, P., Saletu, B., Assessing interactions in the brain with exact low-resolution electromagnetic tomography (2011) Philos Trans A Math Phys Eng Sci, 369, pp. 3768-3784; Pascual-Marqui, R.D., Michel, C.M., Lehmann, D., Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain (1994) Int J Psychophysiol, 18, pp. 49-65; Pascual-Marqui, R.D., Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: Exact, Zero Error Localization. 2007a; arXiv:0710.3341; Pascual-Marqui, R.D., Instantaneous and lagged measurements of linear and nonlinear dependence between groups of multivariate time series: frequency decomposition. 2007b; arXiv:0711.1455; Pascual-Marqui, R.D., Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 2002; 24 Suppl D:5-12; Pascual-Marqui, R.D., Theory of the EEG inverse problem (2009) Quantitative EEG analysis: methods and clinical applications, pp. 121-140. , S. Tong N.V. Thakor Boston Artech House; Pastor, P., Roe, C.M., Villegas, A., Bedoya, G., Chakraverty, S., García, G., Apolipoprotein Eepsilon4 modifies Alzheimer's disease onset in an E280A PS1 kindred (2003) Ann Neurol, 54, pp. 163-169; Pedroso, R.V., Fraga, F.J., Corazza, D.I., Andreatto, C.A., Coelho, F.G., Costa, J.L., P300 latency and amplitude in Alzheimer's disease: a systematic review (2012) Braz J Otorhinolaryngol, 78, pp. 126-132; Persson, K., Barca, M.L., Eldholm, R.S., Cavallin, L., Šaltytė Benth, J., Selbæk, G., Visual evaluation of medial temporal lobe atrophy as a clinical marker of conversion from mild cognitive impairment to dementia and for predicting progression in patients with mild cognitive impairment and mild alzheimer's disease (2017) Dement Geriatr Cogn Disord, 44, pp. 12-24; Peters, F., Collette, F., Degueldre, C., Sterpenich, V., Majerus, S., Salmon, E., The neural correlates of verbal short-term memory in Alzheimer's disease: an fMRI study (2009) Brain, 132, pp. 1833-1846; Petersen, R.C., Lopez, O., Armstrong, M.J., Getchius, T.S.D., Ganguli, M., Gloss, D., Practice guideline update summary: Mild cognitive impairment: Report of the guideline development, dissemination, and Implementation Subcommittee of the American Academy of Neurology (2018) Neurology, 90, pp. 126-135; Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G., Kokmen, E., Mild cognitive impairment: clinical characterization and outcome (1999) Arch Neurol, 56, pp. 303-308; Petersen, R.C., Thomas, R.G., Aisen, P.S., Mohs, R.C., Carrillo, M.C., Albert, M.S., Randomized controlled trials in mild cognitive impairment: Sources of variability (2017) Neurology, 88, pp. 1751-1758; Petersen, R.C., Mild cognitive impairment as a diagnostic entity (2004) J Intern Med, 256, pp. 183-194; Pfurtscheller, G., Aranibar, A., Event-related cortical desynchronization detected by power measurements of scalp EEG (1977) Electroencephalogr Clin Neurophysiol, 42, pp. 817-826; Pfurtscheller, G., Lopes da Silva, F.H., Event-related EEG/MEG synchronization and desynchronization: basic principles (1999) Clin Neurophysiol, 110, pp. 1842-1857; Phelps, M.E., PET: the merging of biology and imaging into molecular imaging (2000) J Nucl Med, 41, pp. 661-681; Pihlajamäki, M., Jauhiainen, A.M., Soininen, H., Structural and functional MRI in mild cognitive impairment (2009) Curr Alzheimer Res, 6, pp. 179-185; Piscopo, P., Marcon, G., Piras, M.R., Crestini, A., Campeggi, L.M., Deiana, E., A novel PSEN2 mutation associated with a peculiar phenotype (2008) Neurology, 70, pp. 1549-1554; Polich, J., Criado, J.R., Neuropsychology and neuropharmacology of P3a and P3b (2006) Int J Psychophysiol, 60, pp. 172-185; Polich, J., Ehlers, C., Otis, S., Mandell, A., Bloom, F., P300 latency reflects the degree of cognitive decline in dementing illness (1986) Electroencephalogr Clin Neurophysiol, 63, pp. 138-144; Polich, J., Howard, L., Starr, A., P300 latency correlates with digit span (1983) Psychophysiology, 20, pp. 665-669; Polich, J., Kok, A., Cognitive and biological determinants of P300: an integrative review (1995) Biol Psychol, 41, pp. 103-146; Polich, J., Ladish, C., Burns, T., Normal variation of P300 in children: age, memory span, and head size (1990) Int J Psychophysiol, 9, pp. 237-248; Polich, J., Martin, S., P300, cognitive capability, and personality: a correlational study of university undergraduates (1992) Pers Ind Diff, 13, pp. 533-543; Polich, J., EEG and ERPs in normal aging (1997) Electroencephalogr Clin Neurophysiol, 104, pp. 228-243; Porcaro, C., Tecchio, F., Semi-blind functional source separation algorithm from non-invasive electrophysiology to neuroimaging (2014) Blind source separation: signals and communication technology, pp. 521-551. , G.R. Wang Springer Berlin, Germany; Prichep, L.S., John, E.R., Ferris, S.H., Rausch, L., Fang, Z., Cancro, R., Prediction of longitudinal cognitive decline in normal elderly with subjective complaints using electrophysiological imaging (2006) Neurobiol Aging, 27, pp. 471-481; Pritchard, W.S., Duke, D.W., Coburn, K.L., Moore, N.C., Tucker, K.A., Jann, M.W., EEG-based, neural-net predictive classification of Alzheimer's disease versus control subjects is augmented by non-linear EEG measures (1994) Electroencephalogr Clin Neurophysiol, 91, pp. 118-130; Rait, G., Walters, K., Bottomley, C., Petersen, I., Iliffe, S., Nazareth, I., Survival of people with clinical diagnosis of dementia in primary care: cohort study (2010) BMJ (Clinical research ed), 341. , c3584; Ramyead, A., Kometer, M., Studerus, E., Koranyi, S., Ittig, S., Gschwandtner, U., Aberrant current source-density and lagged phase synchronization of neural oscillations as markers for emerging psychosis (2015) Schizophr Bull, 41, pp. 919-929; Ravizza, S.M., Behrmann, M., Fiez, J.A., Right parietal contributions to verbal working memory: Spatial or executive? (2005) Neuropsychologia, 43, pp. 2057-2067; Reinvang, I., Cognitive event-related potentials in neuropsychological assessment (1999) Neuropsychol Rev, 9, pp. 231-248; Rey, A., L'examen psychologique dans les cas d'encéphalopathie traumatique. (Les problems.) [The psychological examination in cases of traumatic encephalopathy. Problems] (1941) Archives de Psychologie, 28, pp. 215-285; Richman, J.S., Moorman, J.R., Physiological time-series analysis using approximate entropy and sample entropy (2000) Am J Physiol Heart Circ Physiol, 278, pp. 2039-2049; Ridha, B.H., Barnes, J., van de Pol, L.A., Schott, J.M., Boyes, R.G., Siddique, M.M., Application of automated medial temporal lobe atrophy scale to Alzheimer disease (2007) Arch Neurol, 64, pp. 849-854; Rocca, W.A., Grossardt, B.R., Brue, S.M., Bock-Goodner, C.M., Chamberlain, A.M., Wilson, P.M., Data resource profile: expansion of the rochester epidemiology project medical records-linkage system (E-REP) (2018) Int J Epidemiol, 47. , 368–368; Rossini, P.M., Cappa, S.F., Lattanzio, F., Perani, D., Spadin, P., Tagliavini, F., The Italian INTERCEPTOR project: From the early identification of patients eligible for prescription of antidementia drugs to a nationwide organizational model for early alzheimer's disease diagnosis (2019) J Alzheimers Dis, 72, pp. 373-388; Rossini, P.M., Del Percio, C., Pasqualetti, P., Cassetta, E., Binetti, G., Dal Forno, G., Conversion from mild cognitive impairment to Alzheimer's disease is predicted by sources and coherence of brain electroencephalography rhythms (2006) Neuroscience, 143, pp. 793-803; Rossini, P.M., Di Iorio, R., Bentivoglio, M., Bertini, G., Ferreri, F., Gerloff, C., Methods for analysis of brain connectivity: An IFCN-sponsored review (2019) Clin Neurophysiol, 130, pp. 1833-1858; Rowe, C.C., Villemagne, V.L., Amyloid imaging with PET in early Alzheimer disease diagnosis (2013) Med Clin North Am, 97, pp. 377-398; Rubinov, M., Sporns, O., Complex network measures of brain connectivity: uses and interpretations (2010) NeuroImage, 52, pp. 1059-1069; Sachdev, P.S., Lipnicki, D.M., Kochan, N.A., Crawford, J.D., Thalamuthu, A., Andrews, G., Cohort studies of memory in an international consortium (COSMIC). The prevalence of mild cognitive impairment in diverse geographical and ethnocultural regions: The COSMIC collaboration (2015) PLoS ONE, 10. , e0142388; Sarazin, M., Berr, C., De Rotrou, J., Fabrigoule, C., Pasquier, F., Legrain, S., Amnestic syndrome of the medial temporal type identifies prodromal AD: A longitudinal study (2007) Neurology, 69, pp. 1859-1867; Sarazin, M., de Souza, L.C., Lehéricy, S., Dubois, B., Clinical and research diagnostic criteria for Alzheimer's disease (2012) Neuroimaging Clin N Am, 22, pp. 23-32; Satizabal, C.L., Beiser, A.S., Chouraki, V., Chene, G., Dufouil, C., Seshadri, S., Incidence of dementia over three decades in the framingham heart study (2016) New Eng J Med, 374, pp. 523-532; Sauseng, P., Griesmayr, B., Freunberger, R., Klimesch, W., Control mechanisms in working memory: A possible function of EEG θ oscillations (2010) Neurosci Biobehav Rev, 34, pp. 1015-1022; Scheeringa, R., Petersson, K.M., Kleinschmidt, A., Jensen, O., Bastiaansen, M.C., EEG α power modulation of fMRI resting-state connectivity (2012) Brain Connect, 2, pp. 254-264; Schellenberg, G.D., Montine, T.J., The genetics and neuropathology of alzheimer's disease (2012) Acta Neuropathol, 124, pp. 305-323; Scheltens, P., Leys, D., Barkhof, F., Huglo, D., Weinstein, H.C., Vermersch, P., Atrophy of medial temporal lobes on MRI in “probable” Alzheimer's disease and normal ageing: diagnostic value and neuropsychological correlates (1992) J Neurol Neurosurg Psychiatry, 55, pp. 967-972; Scherg, M., Berg, P., Use of prior knowledge in brain electromagnetic source analysis (1991) Brain Topogr, 4, pp. 143-150; Schurmann, M., Basar, E., Functional aspects of α oscillations in the EEG (2001) Int J Psychophysiol, 39, pp. 151-158; Serra, L., Cercignani, M., Basile, B., Spanò, B., Perri, R., Fada, L., White matter damage along the uncinate fasciculus contributes to cognitive decline in AD and DLB (2012) Curr Alzheimer Res, 9, pp. 326-333; Serra, L., Cercignani, M., Lenzi, D., Perri, R., Fada, L., Caltagirone, C., Grey and white matter changes at different stages of Alzheimer's disease (2010) J Alzheimers Dis, 19, pp. 147-159; Serra, L., Cercignani, M., Petrosini, L., Basile, B., Perri, R., Fada, L., Neuroanatomical correlates of cognitive reserve in Alzheimer disease (2011) Rejuvenation Res, 14, pp. 143-151; Serra, L., Fada, L., Perri, R., Spanò, B., Marra, C., Castelli, D., Constructional apraxia as a distinctive cognitive and structural brain feature of pre-senile alzheimer's disease (2014) J Alzheimers Dis, 38, pp. 391-402; Serra, L., Giulietti, G., Cercignani, M., Spanò, B., Torso, M., Castelli, D., Mild cognitive impairment: same identity for different entities (2013) J Alzheimers Dis, 33, pp. 1157-1165; Serra, L., Mancini, M., Cercignani, M., Di Domenico, C., Spanò, B., Giulietti, G., Network-based substrate of cognitive reserve in alzheimer's disease (2017) J Alzheimers Dis, 55, pp. 421-430; Serra, L., Perri, R., Cercignani, M., Spanò, B., Fada, L., Marra, C., Are the behavioral symptoms of Alzheimer's disease directly associated with neurodegeneration? (2010) J Alzheimers Dis, 21, pp. 627-639; Shaw, L.M., Vanderstichele, H., Knapik-Czajka, M., Clark, C.M., Aisen, P.S., Petersen, R.C., Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects (2009) Ann Neurol, 65, pp. 403-413; Sherrington, R., Rogaev, E.I., Liang, Y., Rogaeva, E.A., Levesque, G., Ikeda, M., Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease (1995) Nature, 375, pp. 754-760; Simons, S., Espino, P., Abásolo, D., Fuzzy entropy analysis of the electroencephalogram in patients with Alzheimer's disease: is the method superior to sample entropy? (2018) Entropy, 20, p. 21; Simonsen, A.H., Herukka, S.K., Andreasen, N., Baldeiras, I., Bjerke, M., Blennow, K., Recommendations for CSF AD biomarkers in the diagnostic evaluation of dementia (2017) Alzheimers Dement, 13, pp. 274-284; Singer, W., Neuronal synchrony: a versatile code for the definition of relations? (1999) Neuron, 24, pp. 49-65; Singer, W., The formation of cooperative cell assemblies in the visual cortex (1990) J Exp Biol, 153, pp. 177-197; Smits, F.M., Porcaro, C., Cottone, C., Cancelli, A., Rossini, P.M., Tecchio, F., Electroencephalographic fractal dimension in healthy ageing and Alzheimer's disease (2016) PLoS ONE, 11. , e0149587; Snider, B.J., Fagan, A.M., Roe, C., Shah, A.R., Grant, E.A., Xiong, C., Cerebrospinal fluid biomarkers and rate of cognitive decline in very mild dementia of the Alzheimer type (2009) Arch Neurol, 66, pp. 638-645; Sorbi, S., Hort, J., Erkinjuntti, T., Fladby, T., Gainotti, G., Gurvit, H., EFNS-ENS Guidelines on the diagnosis and management of disorders associated with dementia (2012) Eur J Neurol, 19, pp. 1159-1179; Sorbi, S., Nacmias, B., Forleo, P., Piacentini, S., Latorraca, S., Amaducci, L., Epistatic effect of APP717 mutation and apolipoprotein E genotype in familial Alzheimer's disease (1995) Ann Neurol, 38, pp. 124-127; Sparks, D.L., Kryscio, R.J., Sabbagh, M.N., Ziolkowski, C., Lin, Y., Sparks, L.M., Tau is reduced in AD plasma and validation of employed ELISA methods (2012) Am J Neurodegener Dis, 1, pp. 99-106; Spinelli, E.G., Mandelli, M.L., Miller, Z.A., Santos-Santos, M.A., Wilson, S.M., Agosta, F., Typical and atypical pathology in primary progressive aphasia variants (2017) Ann Neurol, 81, pp. 430-443; Sporns, O., Network attributes for segregation and integration in the human brain (2013) Curr Opin Neurobiol, 23, pp. 162-171; Srinivasan, R., Winter, W.R., Ding, J., Nunez, P.L., EEG and MEG coherence: measures of functional connectivity at distinct spatial scales of neocortical dynamics (2007) J Neurosci Methods, 166, pp. 41-52; Stam, C.J., Jelles, B., Achtereekte, H.A., Rombouts, S.A., Slaets, J.P., Keunen, R.W., Investigation of EEG non-linearity in dementia and Parkinson's disease (1995) Electroencephalogr Clin Neurophysiol, 95, pp. 309-317; Stam, C.J., Jelles, B., Achtereekte, H.A., van Birgelen, J.H., Slaets, J.P., Diagnostic usefulness of linear and nonlinear quantitative EEG analysis in Alzheimer's disease (1996) Clin Electroencephalogr, 27, pp. 69-77; Stam, C.J., Pijn, J.P., Suffczynski, P., Lopes da Silva, F.H., Dynamics of the human α rhythm: evidence for non-linearity? (1999) Clin Neurophysiol, 110, pp. 1801-1813; Stam, C.J., Modern network science of neurological disorders (2014) Nat Rev Neurosci, 15, pp. 683-695; Stam, C.J., Nonlinear dynamical analysis of EEG and MEG: review of an emerging field (2005) Clin Neurophysiol, 116, pp. 2266-2301; Stelmack, R.M., Houlihan, M., Event-related potentials, personality, and intelligence: concepts, issues, and evidence (1994) International handbook of personality and intelligence, pp. 349-365. , D.H. Saklofske M. Zaidner Plenum Press New York; (2018) Alzheimer's & Dementia; Steriade, M., Corticothalamic networks, oscillations, and plasticity (1998) Adv Neurol, 77, pp. 105-134; Stroop, J., Stroop color word test (1935) J Exp Physiol, 18, pp. 643-662; Talairach, J., Tournoux, P., Co-planar stereotaxic atlas of the human brain (1988), Thieme Medical New York; Tallon-Baudry, C., Bertrand, O., Peronnet, F., Pernier, J., Induced γ-band activity during the delay of a visual short-term memory task in humans (1998) J Neurosci, 18, pp. 4244-4254; Tallon-Baudry, C., Bertrand, O., Oscillatory γ activity in humans and its role in object representation (1999) Trends Cogn Sci, 3, pp. 151-162; Tang, M., Ryman, D.C., McDade, E., Jasielec, M.S., Buckles, V.D., Cairns, N.J., Neurological manifestations of autosomal dominant familial Alzheimer's disease: a comparison of the published literature with the Dominantly Inherited Alzheimer Network observational study (DIAN-OBS) (2016) Lancet Neurol, 15, pp. 1317-1325; Tecchio, F., Porcaro, C., Barbati, G., Zappasodi, F., Functional source separation and hand cortical representation for a brain-computer interface feature extraction (2007) J Physiol, 580, pp. 703-721; Teipel, S.J., Kurth, J., Krause, B., Grothe, M.J., The relative importance of imaging markers for the prediction of Alzheimer's disease dementia in mild cognitive impairment - Beyond classical regression (2015) Neuroimage Clin, 8, pp. 583-585; Tierney, M.C., Cognitive tests that best discriminate between presymptomatic AD and those who remain nondemented (2001) Neurology, 57, pp. 163-164; Tijms, B.M., Wink, A.M., de Haan, W., van der Flier, W.M., Stam, C.J., Scheltens, P., Alzheimer's disease: connecting findings from graph theoretical studies of brain networks (2013) Neurobiol Aging, 34, pp. 2023-2036; Timothy, L.T., Krishna, B.M., Nair, U., Classification of mild cognitive impairment EEG using combined recurrence and cross recurrence quantification analysis (2017) Int J Psychophysiol, 120, pp. 86-95; Torralva, T., Roca, M., Gleichgerrcht, E., Bekinschtein, T., Manes, F., A neuropsychological battery to detect specific executive and social cognitive impairments in early frontotemporal dementia (2009) Brain, 132, pp. 1299-1309; Trambaiolli, L.R., Lorena, A.C., Fraga, F.J., Kanda, P.A.M., Anghinah, R., Nitrini, R., Improving Alzheimer's disease diagnosis with machine learning techniques (2011) Clin EEG Neurosci, 42, pp. 160-165; Tzen, K.Y., Yang, S.Y., Chen, T.F., Cheng, T.W., Horng, H.E., Wen, H.P., Plasma Abeta but not tau is related to brain PiB retention in early Alzheimer's disease (2014) ACS Chem Neurosci, 5, pp. 830-836; Uhlhaas, P.J., Singer, W., Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology (2006) Neuron, 52, pp. 155-168; Valdés-Sosa, P.A., Vega-Hernández, M., Sánchez-Bornot, J.M., Martínez-Montes, E., Bobes, M.A., EEG source imaging with spatio-temporal tomographic nonnegative independent component analysis (2009) Hum Brain Mapp, 30, pp. 1898-1910; van der Hiele, K., Vein, A.A., van der Welle, A., van der Grond, J., Westendorp, R.G., Bollen, E.L., EEG and MRI correlates of mild cognitive impairment and Alzheimer's disease (2007) Neurobiol Aging, 28, pp. 1322-1329; van Deursen, J.A., Vuurman, E.F.P.M., van Kranen-Mastenbroek, V.H.J.M., Verhey, F.R.J., Riedel, W.J., 40-Hz steady state response in Alzheimer's disease and mild cognitive impairment (2011) Neurobiol Aging, 32, pp. 24-30; Vecchio, F., Lacidogna, G., Miraglia, F., Bramanti, P., Ferreri, F., Rossini, P.M., Prestimulus interhemispheric coupling of brain rhythms predicts cognitive-motor performance in healthy humans (2014) J Cogn Neurosci, 26, pp. 1883-1890; Vecchio, F., Miraglia, F., Bramanti, P., Rossini, P.M., Human brain networks in physiological aging: a graph theoretical analysis of cortical connectivity from EEG data (2014) J Alzheimers Dis, 41, pp. 1239-1249; Vecchio, F., Miraglia, F., Curcio, G., Altavilla, R., Scrascia, F., Giambattistelli, F., Cortical brain connectivity evaluated by graph theory in dementia: a correlation study between functional and structural data (2015) J Alzheimers Dis, 45, pp. 745-756; Vecchio, F., Miraglia, F., Iberite, F., Lacidogna, G., Guglielmi, V., Marra, C., Sustainable method for Alzheimer dementia prediction in mild cognitive impairment: Electroencephalographic connectivity and graph theory combined with apolipoprotein E (2018) Ann Neurol, 84, pp. 302-314; Vecchio, F., Miraglia, F., Marra, C., Quaranta, D., Vita, M.G., Bramanti, P., Human brain networks in cognitive decline: a graph theoretical analysis of cortical connectivity from EEG data (2014) J Alzheimers Dis, 41, pp. 113-127; Vecchio, F., Miraglia, F., Piludu, F., Granata, G., Romanello, R., Caulo, M., “Small World” architecture in brain connectivity and hippocampal volume in Alzheimer's disease: a study via graph theory from EEG data (2017) Brain Imaging Behav, 11, pp. 473-485; Vecchio, F., Miraglia, F., Quaranta, D., Granata, G., Romanello, R., Marra, C., Cortical connectivity and memory performance in cognitive decline: a study via graph theory from EEG data (2016) Neuroscience, 316, pp. 143-150; Vecchio, F., Miraglia, Rossini, P.M., Tracking neuronal connectivity from electric brain signals to predict performance (2019) Neuroscientist, 25, pp. 86-93; Vecchio, F., Pellicciari, M.C., Miraglia, F., Brignani, D., Miniussi, C., Rossini, P.M., Effects of transcranial direct current stimulation on the functional coupling of the sensorimotor cortical network (2016) Neuroimage, 140, pp. 50-56; Verleger, R., On the utility of P3 latency as an index of mental chronometry (1997) Psychophysiology, 34, pp. 131-156; Vinck, M., Womelsdorf, T., Buffalo, E.A., Desimone, R., Fries, P., Attentional modulation of cell-class-specific γ-band synchronization in awake monkey area v4 (2013) Neuron, 80, pp. 1077-1089; Vrba, J., Robinson, S.E., Signal processing in magnetoencephalography (2001) Methods, 25, pp. 249-271; Wagner, M., Wolf, S., Reischies, F., Daerr, M., Wolfsgruber, S., Jessen, F., Biomarker validation of a cued recall memory deficit in prodromal Alzheimer disease (2012) Neurology, 78, pp. 379-386; Wahlund, L.O., Barkhof, F., Fazekas, F., Bronge, L., Augustin, M., Sjögren, M., European, Task force on age-related white matter changes. A new rating scale for age-related white matter changes applicable to MRI and CT (2001) Stroke, 32, pp. 1318-1322; Wallon, D., Rousseau, S., Rovelet-Lecrux, A., Quillard-Muraine, M., Guyant-Maréchal, L., Martinaud, O., The French series of autosomal dominant early onset Alzheimer's disease cases: mutation spectrum and cerebrospinal fluid biomarkers (2012) J Alzheimers Dis, 30, pp. 847-856; Wang, T., Xiao, S., Liu, Y., Lin, Z., Su, N., Li, X., The efficacy of plasma biomarkers in early diagnosis of Alzheimer's disease (2014) Int J Geriatr Psychiatry, 29, pp. 713-719; Warrington, E., James, M., VOSP visual object and space perception test battery (1991), TVTC Thames Valley Test Company Bury St Edmunds, UK; Watts, D.J., Strogatz, S.H., Collective dynamics of 'small-world' networks (1998) Nature, 393, pp. 440-442; Wilmer, H.H., Sherman, L.E., Chein, J.M., Smartphones and Cognition: A review of research exploring the links between mobile technology habits and cognitive functioning (2017) Front Psychol, 8, p. 605; Wimo, A., Guerchet, M., Ali, G.C., Wu, Y.T., Prina, A.M., Winblad, B., The worldwide costs of dementia 2015 and comparisons with 2010 (2017) Alzheimers Dement, 13, pp. 1-7; Wimo, A., Jonsson, L., Bond, J., Prince, M., Winblad, B., The worldwide economic impact of dementia 2010 (2013) Alzheimers Dement, 9, pp. 1-11; Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A., Determining Lyapunov exponents from a time series (1985) Phys Nonlinear Phenom, 16, pp. 285-317; Worsley, K.J., Chen, J.I., Lerch, J., Evans, A.C., Comparing functional connectivity via thresholding correlations and singular value decomposition (2005) Philos Trans R Soc Lond B Biol Sci, 360, pp. 913-920; Woyshville, M.J., Calabrese, J.R., Quantification of occipital EEG changes in Alzheimer's disease utilizing a new metric: the fractal dimension (1994) Biol Psychiatry, 35, pp. 381-387; Wróbel, A., Ghazaryan, A., Bekisz, M., Bogdan, W., Kamiński, J., Two streams of attention-dependent β activity in the striate recipient zone of cat's lateral posterior-pulvinar complex (2007) J Neurosci, 27, pp. 2230-2240; Xie, T., He, Y., Mapping the Alzheimer's brain with connectomics (2011) Front Psychiatry, 2, p. 77; Yang, A.C., Tsai, S.J., Is mental illness complex? From behavior to brain (2013) Prog Neuropsychopharmacol Biol Psychiatry, 45, pp. 253-257; Yang, A.C., Wang, S.J., Lai, K.L., Tsai, C.F., Yang, C.H., Hwang, J.P., Cognitive and neuropsychiatric correlates of EEG dynamic complexity in patients with Alzheimer's disease (2013) Prog Neuropsychopharmacol Biol Psychiatry, 47, pp. 52-61; Yang, S.Y., Chiu, M.J., Chen, T.F., Horng, H.E., Detection of plasma biomarkers using Immunomagnetic reduction: a promising method for the early diagnosis of Alzheimer's disease (2017) Neurol Ther, 6, pp. 37-56; Yao, D., He, B., A self-coherence enhancement algorithm and its application to enhancing three-dimensional source estimation from EEGs (2001) Ann Biomed Eng, 29, pp. 1019-1027; Yener, G.G., Başar, E., Biomarkers in ADwith a special emphasis on event-related oscillatory responses (2013) Suppl Clin Neurophysiol, 62, pp. 237-273; Yener, G.G., Emek-Savaş, D.D., Lizio, R., Çavuşoğlu, B., Carducci, F., Ada, E., Frontal δ event-related oscillations relate to frontal volume in mild cognitive impairment and healthy controls (2016) Int J Psychophysiol, 103, pp. 110-117; Yener, G.G., Güntekin, B., Başar, E., Event-related δ oscillatory responses of Alzheimer patients (2008) Eur J Neurol, 15, pp. 540-547; Yener, G.G., Güntekin, B., Öniz, A., Başar, E., Increased frontal phase-locking of event-related θ oscillations in Alzheimer patients treated with cholinesterase inhibitors (2007) Int J Psychophysiol, 64, pp. 46-52; Yener, G.G., Güntekin, B., Örken, D.N., Tülay, E., Forta, H., Başar, E., Auditory δ event-related oscillatory responses are decreased in Alzheimer's disease (2012) Behav Neurol, 25, pp. 3-11; Yener, G.G., Kurt, P., Emek-Savaş, D.D., Güntekin, B., Başar, E., Reduced visual event-related δ oscillatory responses in amnestic mild cognitive impairment (2013) J Alzheimers Dis, 37, pp. 759-767; Zheng, L., Kong, X., Cui, Y., Wei, Y., Zhang, J., Wei, W., Conversion from MCI to AD in patients with the APOE ε4 genotype: Prediction by plasma HCY and serum BDNF (2016) Neurosci Lett, 626, pp. 19-24
PY - 2020
Y1 - 2020
N2 - Alzheimer's disease (AD) is the most common neurodegenerative disease among the elderly with a progressive decline in cognitive function significantly affecting quality of life. Both the prevalence and emotional and financial burdens of AD on patients, their families, and society are predicted to grow significantly in the near future, due to a prolongation of the lifespan. Several lines of evidence suggest that modifications of risk-enhancing life styles and initiation of pharmacological and non-pharmacological treatments in the early stage of disease, although not able to modify its course, helps to maintain personal autonomy in daily activities and significantly reduces the total costs of disease management. Moreover, many clinical trials with potentially disease-modifying drugs are devoted to prodromal stages of AD. Thus, the identification of markers of conversion from prodromal form to clinically AD may be crucial for developing strategies of early interventions. The current available markers, including volumetric magnetic resonance imaging (MRI), positron emission tomography (PET), and cerebral spinal fluid (CSF) analysis are expensive, poorly available in community health facilities, and relatively invasive. Taking into account its low cost, widespread availability and non-invasiveness, electroencephalography (EEG) would represent a candidate for tracking the prodromal phases of cognitive decline in routine clinical settings eventually in combination with other markers. In this scenario, the present paper provides an overview of epidemiology, genetic risk factors, neuropsychological, fluid and neuroimaging biomarkers in AD and describes the potential role of EEG in AD investigation, trying in particular to point out whether advanced analysis of EEG rhythms exploring brain function has sufficient specificity/sensitivity/accuracy for the early diagnosis of AD. © 2020 International Federation of Clinical Neurophysiology
AB - Alzheimer's disease (AD) is the most common neurodegenerative disease among the elderly with a progressive decline in cognitive function significantly affecting quality of life. Both the prevalence and emotional and financial burdens of AD on patients, their families, and society are predicted to grow significantly in the near future, due to a prolongation of the lifespan. Several lines of evidence suggest that modifications of risk-enhancing life styles and initiation of pharmacological and non-pharmacological treatments in the early stage of disease, although not able to modify its course, helps to maintain personal autonomy in daily activities and significantly reduces the total costs of disease management. Moreover, many clinical trials with potentially disease-modifying drugs are devoted to prodromal stages of AD. Thus, the identification of markers of conversion from prodromal form to clinically AD may be crucial for developing strategies of early interventions. The current available markers, including volumetric magnetic resonance imaging (MRI), positron emission tomography (PET), and cerebral spinal fluid (CSF) analysis are expensive, poorly available in community health facilities, and relatively invasive. Taking into account its low cost, widespread availability and non-invasiveness, electroencephalography (EEG) would represent a candidate for tracking the prodromal phases of cognitive decline in routine clinical settings eventually in combination with other markers. In this scenario, the present paper provides an overview of epidemiology, genetic risk factors, neuropsychological, fluid and neuroimaging biomarkers in AD and describes the potential role of EEG in AD investigation, trying in particular to point out whether advanced analysis of EEG rhythms exploring brain function has sufficient specificity/sensitivity/accuracy for the early diagnosis of AD. © 2020 International Federation of Clinical Neurophysiology
KW - AD biomarkers
KW - Alzheimer's disease
KW - Dementia
KW - Early diagnosis
KW - EEG analysis
KW - EEG rhythms
KW - Event-related responses
KW - Mild cognitive impairment
KW - biological marker
KW - Alzheimer disease
KW - attention
KW - cerebrospinal fluid analysis
KW - cost effectiveness analysis
KW - diagnostic accuracy
KW - early diagnosis
KW - electroencephalogram
KW - epidemiology
KW - functional connectivity
KW - functional magnetic resonance imaging
KW - genetic marker
KW - human
KW - neuroimaging
KW - nuclear magnetic resonance imaging
KW - positron emission tomography
KW - priority journal
KW - Review
KW - sensitivity and specificity
KW - time series analysis
KW - working memory
KW - brain
KW - electroencephalography
KW - pathophysiology
KW - signal processing
KW - Alzheimer Disease
KW - Biomarkers
KW - Brain
KW - Early Diagnosis
KW - Electroencephalography
KW - Humans
KW - Sensitivity and Specificity
KW - Signal Processing, Computer-Assisted
U2 - 10.1016/j.clinph.2020.03.003
DO - 10.1016/j.clinph.2020.03.003
M3 - Article
VL - 131
SP - 1287
EP - 1310
JO - Clin. Neurophysiol.
JF - Clin. Neurophysiol.
SN - 1388-2457
IS - 6
ER -