Effect of mechanical strain on the collagen VI pericellular matrix in anterior cruciate ligament fibroblasts

Francesca Sardone, Francesco Traina, Francesca Tagliavini, Camilla Pellegrini, Luciano Merlini, Stefano Squarzoni, Spartaco Santi, Simona Neri, Cesare Faldini, Nadir Maraldi, Patrizia Sabatelli

Research output: Contribution to journalArticlepeer-review


Cell-extracellular matrix interaction plays a major role in maintaining the structural integrity of connective tissues and sensing changes in the biomechanical environment of cells. Collagen VI is a widely expressed non-fibrillar collagen, which regulates tissues homeostasis. The objective of the present investigation was to extend our understanding of the role of collagen VI in human ACL. This study shows that collagen VI is associated both in vivo and in vitro to the cell membrane of knee ACL fibroblasts, contributing to the constitution of a microfibrillar pericellular matrix. In cultured cells the localization of collagen VI at the cell surface correlated with the expression of NG2 proteoglycan, a major collagen VI receptor. The treatment of ACL fibroblasts with anti-NG2 antibody abolished the localization of collagen VI indicating that collagen VI pericellular matrix organization in ACL fibroblasts is mainly mediated by NG2 proteoglycan. In vitro mechanical strain injury dramatically reduced the NG2 proteoglycan protein level, impaired the association of collagen VI to the cell surface, and promoted cell cycle withdrawal. Our data suggest that the injury-induced alteration of specific cell-ECM interactions may lead to a defective fibroblast self-renewal and contribute to the poor regenerative ability of ACL fibroblasts. J. Cell. Physiol. 229: 878-886, 2014.

Original languageEnglish
Pages (from-to)878-886
Number of pages9
JournalJournal of Cellular Physiology
Issue number7
Publication statusPublished - 2014

ASJC Scopus subject areas

  • Clinical Biochemistry
  • Cell Biology
  • Physiology


Dive into the research topics of 'Effect of mechanical strain on the collagen VI pericellular matrix in anterior cruciate ligament fibroblasts'. Together they form a unique fingerprint.

Cite this