Effects of leg muscle tendon vibration on group Ia and group II reflex responses to stance perturbation in humans

Marco Bove, Antonio Nardone, Marco Schieppati

Research output: Contribution to journalArticle

105 Citations (Scopus)

Abstract

Stretching the soleus (Sol) muscle during sudden toe-up rotations of the supporting platform in a standing subject evokes a short-latency response (SLR) and a medium-latency response (MLR). The aim of the present investigation was to further explore the afferent and spinal pathways mediating the SLR and MLR in lower limb muscles by means of tendon vibration. In seven subjects, toe-up or toe-down rotations were performed under: (1) control, (2) continuous bilateral vibration at 90 Hz of Achilles' tendon or tibialis anterior (TA) tendon, and (3) post-vibration conditions. Sol and TA background EMG activity and reflex responses were bilaterally recorded and analysed. Toe-up rotations induced SLRs and MLRs in Sol at average latencies of 40 and 66 ins, respectively. During vibration, the latency of both responses increased by about 2 ms. The area of the SLR significantly decreased during vibration, regardless of the underlying background activity, and almost returned to control value post-vibration. The area of Sol MLR was less influenced by vibration than SLR, the reduction being negligible with relatively high background activity. However, contrary to SLR, MLR was even more reduced post-vibration. Toe-down rotations induced no SLR in the TA, while a MLR was evoked at about 81 ms. The area of TA MLR decreased slightly during vibration but much more post-vibration. SLRs and MLRs were differently affected by changing the vibration frequency to 30 Hz: vibration had a negligible effect on the SLR, but still produced a significant effect on the MLR. The independence from the background EMG of the inhibitory effect of vibration upon the SLR suggests that vibration removes a constant amount of the Ia afferent input. This can be accounted for by either presynaptic inhibition of group Ia fibres or a 'busy-line' phenomenon. The differential effect of vibration on SLRs and MLRs is compatible with the notions that spindle primaries have a higher sensitivity to vibration than secondaries, and that group II afferent fibres are responsible for the production of the MLR. The decrease of MLRs but not SLRs after vibration is discussed in terms of an interaction between peripheral and central drive on group II interneurones in order to produce sufficient EMG activity to maintain a given postural set.

Original languageEnglish
Pages (from-to)617-630
Number of pages14
JournalJournal of Physiology
Volume550
Issue number2
DOIs
Publication statusPublished - Jul 15 2003

Fingerprint

Vibration
Tendons
Reaction Time
Reflex
Leg
Muscles
Toes
Afferent Pathways
Achilles Tendon
Interneurons

ASJC Scopus subject areas

  • Physiology

Cite this

Effects of leg muscle tendon vibration on group Ia and group II reflex responses to stance perturbation in humans. / Bove, Marco; Nardone, Antonio; Schieppati, Marco.

In: Journal of Physiology, Vol. 550, No. 2, 15.07.2003, p. 617-630.

Research output: Contribution to journalArticle

@article{72e5151af8d546cba935f812e5367b19,
title = "Effects of leg muscle tendon vibration on group Ia and group II reflex responses to stance perturbation in humans",
abstract = "Stretching the soleus (Sol) muscle during sudden toe-up rotations of the supporting platform in a standing subject evokes a short-latency response (SLR) and a medium-latency response (MLR). The aim of the present investigation was to further explore the afferent and spinal pathways mediating the SLR and MLR in lower limb muscles by means of tendon vibration. In seven subjects, toe-up or toe-down rotations were performed under: (1) control, (2) continuous bilateral vibration at 90 Hz of Achilles' tendon or tibialis anterior (TA) tendon, and (3) post-vibration conditions. Sol and TA background EMG activity and reflex responses were bilaterally recorded and analysed. Toe-up rotations induced SLRs and MLRs in Sol at average latencies of 40 and 66 ins, respectively. During vibration, the latency of both responses increased by about 2 ms. The area of the SLR significantly decreased during vibration, regardless of the underlying background activity, and almost returned to control value post-vibration. The area of Sol MLR was less influenced by vibration than SLR, the reduction being negligible with relatively high background activity. However, contrary to SLR, MLR was even more reduced post-vibration. Toe-down rotations induced no SLR in the TA, while a MLR was evoked at about 81 ms. The area of TA MLR decreased slightly during vibration but much more post-vibration. SLRs and MLRs were differently affected by changing the vibration frequency to 30 Hz: vibration had a negligible effect on the SLR, but still produced a significant effect on the MLR. The independence from the background EMG of the inhibitory effect of vibration upon the SLR suggests that vibration removes a constant amount of the Ia afferent input. This can be accounted for by either presynaptic inhibition of group Ia fibres or a 'busy-line' phenomenon. The differential effect of vibration on SLRs and MLRs is compatible with the notions that spindle primaries have a higher sensitivity to vibration than secondaries, and that group II afferent fibres are responsible for the production of the MLR. The decrease of MLRs but not SLRs after vibration is discussed in terms of an interaction between peripheral and central drive on group II interneurones in order to produce sufficient EMG activity to maintain a given postural set.",
author = "Marco Bove and Antonio Nardone and Marco Schieppati",
year = "2003",
month = "7",
day = "15",
doi = "10.1113/jphysiol.2003.043331",
language = "English",
volume = "550",
pages = "617--630",
journal = "Journal of Physiology",
issn = "0022-3751",
publisher = "Wiley-Blackwell",
number = "2",

}

TY - JOUR

T1 - Effects of leg muscle tendon vibration on group Ia and group II reflex responses to stance perturbation in humans

AU - Bove, Marco

AU - Nardone, Antonio

AU - Schieppati, Marco

PY - 2003/7/15

Y1 - 2003/7/15

N2 - Stretching the soleus (Sol) muscle during sudden toe-up rotations of the supporting platform in a standing subject evokes a short-latency response (SLR) and a medium-latency response (MLR). The aim of the present investigation was to further explore the afferent and spinal pathways mediating the SLR and MLR in lower limb muscles by means of tendon vibration. In seven subjects, toe-up or toe-down rotations were performed under: (1) control, (2) continuous bilateral vibration at 90 Hz of Achilles' tendon or tibialis anterior (TA) tendon, and (3) post-vibration conditions. Sol and TA background EMG activity and reflex responses were bilaterally recorded and analysed. Toe-up rotations induced SLRs and MLRs in Sol at average latencies of 40 and 66 ins, respectively. During vibration, the latency of both responses increased by about 2 ms. The area of the SLR significantly decreased during vibration, regardless of the underlying background activity, and almost returned to control value post-vibration. The area of Sol MLR was less influenced by vibration than SLR, the reduction being negligible with relatively high background activity. However, contrary to SLR, MLR was even more reduced post-vibration. Toe-down rotations induced no SLR in the TA, while a MLR was evoked at about 81 ms. The area of TA MLR decreased slightly during vibration but much more post-vibration. SLRs and MLRs were differently affected by changing the vibration frequency to 30 Hz: vibration had a negligible effect on the SLR, but still produced a significant effect on the MLR. The independence from the background EMG of the inhibitory effect of vibration upon the SLR suggests that vibration removes a constant amount of the Ia afferent input. This can be accounted for by either presynaptic inhibition of group Ia fibres or a 'busy-line' phenomenon. The differential effect of vibration on SLRs and MLRs is compatible with the notions that spindle primaries have a higher sensitivity to vibration than secondaries, and that group II afferent fibres are responsible for the production of the MLR. The decrease of MLRs but not SLRs after vibration is discussed in terms of an interaction between peripheral and central drive on group II interneurones in order to produce sufficient EMG activity to maintain a given postural set.

AB - Stretching the soleus (Sol) muscle during sudden toe-up rotations of the supporting platform in a standing subject evokes a short-latency response (SLR) and a medium-latency response (MLR). The aim of the present investigation was to further explore the afferent and spinal pathways mediating the SLR and MLR in lower limb muscles by means of tendon vibration. In seven subjects, toe-up or toe-down rotations were performed under: (1) control, (2) continuous bilateral vibration at 90 Hz of Achilles' tendon or tibialis anterior (TA) tendon, and (3) post-vibration conditions. Sol and TA background EMG activity and reflex responses were bilaterally recorded and analysed. Toe-up rotations induced SLRs and MLRs in Sol at average latencies of 40 and 66 ins, respectively. During vibration, the latency of both responses increased by about 2 ms. The area of the SLR significantly decreased during vibration, regardless of the underlying background activity, and almost returned to control value post-vibration. The area of Sol MLR was less influenced by vibration than SLR, the reduction being negligible with relatively high background activity. However, contrary to SLR, MLR was even more reduced post-vibration. Toe-down rotations induced no SLR in the TA, while a MLR was evoked at about 81 ms. The area of TA MLR decreased slightly during vibration but much more post-vibration. SLRs and MLRs were differently affected by changing the vibration frequency to 30 Hz: vibration had a negligible effect on the SLR, but still produced a significant effect on the MLR. The independence from the background EMG of the inhibitory effect of vibration upon the SLR suggests that vibration removes a constant amount of the Ia afferent input. This can be accounted for by either presynaptic inhibition of group Ia fibres or a 'busy-line' phenomenon. The differential effect of vibration on SLRs and MLRs is compatible with the notions that spindle primaries have a higher sensitivity to vibration than secondaries, and that group II afferent fibres are responsible for the production of the MLR. The decrease of MLRs but not SLRs after vibration is discussed in terms of an interaction between peripheral and central drive on group II interneurones in order to produce sufficient EMG activity to maintain a given postural set.

UR - http://www.scopus.com/inward/record.url?scp=0038793494&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0038793494&partnerID=8YFLogxK

U2 - 10.1113/jphysiol.2003.043331

DO - 10.1113/jphysiol.2003.043331

M3 - Article

C2 - 12777449

AN - SCOPUS:0038793494

VL - 550

SP - 617

EP - 630

JO - Journal of Physiology

JF - Journal of Physiology

SN - 0022-3751

IS - 2

ER -