Effects of long time exposure to simulated micro- and hypergravity on skeletal architecture

Barbara Canciani, Alessandra Ruggiu, Alessandra Giuliani, Daniele Panetta, Katia Marozzi, Maria Tripodi, Piero A. Salvadori, Michele Cilli, Yoshinobu Ohira, Ranieri Cancedda, Sara Tavella

Research output: Contribution to journalArticle

Abstract

This manuscript reports the structural alterations occurring in mice skeleton as a consequence of the longest-term exposition (90 days) to simulated microgravity (hindlimb unloading) and hypergravity (2. g) ever tested. Bone microstructural features were investigated by means of standard Cone Beam X-ray micro-CT, Synchrotron Radiation micro-CT and histology.Morphometric analysis confirmed deleterious bone architectural changes in lack of mechanical loading with a decrease of bone volume and density, while bone structure alterations caused by hypergravity were less evident. In the femurs from hypergravity-exposed mice, the head/neck cortical thickness increment was the main finding. In addition, in these mice the rate of larger trabeculae (60-75. μm) was significantly increased. Interestingly, the metaphyseal plate presented a significant adaptation to gravity changes. Mineralization of cartilage and bone deposition was increased in the 2. g mice, whereas an enlargement of the growth plate cartilage was observed in the hindlimb unloaded group.Indeed, the presented data confirm and reinforce the detrimental effects on bone observed in real space microgravity and reveal region-specific effects on long bones.Finally these data could represent the starting point for further long-term experimentations that can deeply investigate the bone adaptation mechanisms to different mechanical force environments.

Original languageEnglish
Pages (from-to)1-12
Number of pages12
JournalJournal of the Mechanical Behavior of Biomedical Materials
Volume51
DOIs
Publication statusPublished - Nov 1 2015

    Fingerprint

Keywords

  • Bone microarchitecture
  • Hypergravity
  • Mice
  • Microgravity

ASJC Scopus subject areas

  • Biomaterials
  • Biomedical Engineering
  • Mechanics of Materials

Cite this

Canciani, B., Ruggiu, A., Giuliani, A., Panetta, D., Marozzi, K., Tripodi, M., Salvadori, P. A., Cilli, M., Ohira, Y., Cancedda, R., & Tavella, S. (2015). Effects of long time exposure to simulated micro- and hypergravity on skeletal architecture. Journal of the Mechanical Behavior of Biomedical Materials, 51, 1-12. https://doi.org/10.1016/j.jmbbm.2015.06.014