Electrophysiological recordings and calcium measurements in striatal large aspiny interneurons in response to combined O2/glucose deprivation

Antonio Pisani, Paolo Calabresi, Diego Centonze, Girolama A. Marfia, Giorgio Bernardi

Research output: Contribution to journalArticlepeer-review


The effects of combined O2/glucose deprivation were investigated on large aspiny (LA) interneurons recorded from a striatal slice preparation by means of simultaneous electrophysiological and optical recordings. LA interneurons were visually identified and impaled with sharp microelectrodes loaded with the calcium (Ca2+)-sensitive dye bis-fura-2. These cells showed the morphological, electrophysiological, and pharmacological features of large striatal cholinergic interneurons. O2/glucose deprivation induced a membrane hyperpolarization coupled to a concomitant increase in intracellular Ca2+ concentration ([Ca2+](i)). Interestingly, this [Ca2+](i) elevation was more pronounced in dendritic branches rather than in the somatic region. The O2/glucose-deprivation-induced membrane hyperpolarization reversed its polarity at the potassium (K+) equilibrium potential. Both membrane hyperpolarization and [Ca2+](i) rise were unaffected by TTX or by a combination of ionotropic glutamate receptors antagonists, D-2 amino-5- phosphonovaleric acid and 6-cyano-7-nitroquinoxaline-2,3-dione. Sulfonylurea glibenclamide, a blocker of ATP-sensitive K+ channels, markedly reduced the O2/glucose-deprivation-induced membrane hyperpolarization but failed to prevent the rise in [Ca2+](i). Likewise, charybdotoxin, a large K+ channel (BK) inhibitor, abolished the membrane hyperpolarization but did not produce detectable changes of [Ca2+](i) elevation. A combination of high-voltage- activated Ca2+ channel blockers; significantly reduced both the membrane hyperpolarization and the rise in [Ca2+](i). In a set of experiments performed without dye in the recording electrode, either intracellular bis- (o-aminophenoxy)-N,N,N',N'-tetraacetic acid or external barium abolished the membrane hyperpolarization induced by O2/glucose deprivation. The hyperpolarizing effect on membrane potential was mimicked by oxotremorine, an M2-like muscarinic receptor agonist, and by baclofen, a GABA(B) receptor agonist. However, this membrane hyperpolarization was not coupled to an increase but rather to a decrease of the basal [Ca2+](i). Furthermore glibenclamide did not reduce the oxotremorine- and baclofen-induced membrane hyperpolarization. In conclusion, the present results suggest that in striatal LA cells, O2/glucose deprivation activates a membrane hyperpolarization that does not involve ligand-gated K+ conductances but is sensitive to barium, glibenclamide, and charybdotoxin. The increase in [Ca2+](i) is partially due to influx through voltage-gated high-voltage- activated Ca2+ channels.

Original languageEnglish
Pages (from-to)2508-2516
Number of pages9
JournalJournal of Neurophysiology
Issue number5
Publication statusPublished - 1999

ASJC Scopus subject areas

  • Physiology
  • Neuroscience(all)


Dive into the research topics of 'Electrophysiological recordings and calcium measurements in striatal large aspiny interneurons in response to combined O2/glucose deprivation'. Together they form a unique fingerprint.

Cite this