Engineered T regulatory type 1 cells for clinical application

S Gregori, MG Roncarolo

Research output: Contribution to journalArticle

Abstract

T regulatory cells, a specialized subset of T cells, are key players in modulating antigen (Ag)-specific immune responses in vivo. Inducible T regulatory type 1 (Tr1) cells are characterized by the co-expression of CD49b and lymphocyte-activation gene 3 (LAG-3) and the ability to secrete IL-10, TGF-β, and granzyme (Gz) B, in the absence of IL-4 and IL-17. The chief mechanisms by which Tr1 cells control immune responses are secretion of IL-10 and TGF-β and killing of myeloid cells via GzB. Tr1 cells, first described in peripheral blood of patients who developed tolerance after HLA-mismatched fetal liver hematopoietic stem cell transplantation, have been proven to modulate inflammatory and effector T cell responses in several immune-mediated diseases. The possibility to generate and expand Tr1 cells in vitro in an Ag-specific manner has led to their clinical use as cell therapy in patients. Clinical grade protocols to generate or to enrich and expand Tr1 cell medicinal products have been established. Proof-of-concept clinical trials with Tr1 cell products have demonstrated the safety and the feasibility of this approach and indicated some clinical benefit. In the present review, we provide an overview on protocols established to induce/expand Tr1 cells in vitro for clinical application and on results obtained in Tr1 cell-based clinical trials. Moreover, we will discuss a recently developed protocol to efficient convert human CD4 + T cells into a homogeneous population of Tr1-like cells by lentiviral vector-mediated IL-10 gene transfer. © 2018 Gregori and Roncarolo.
Original languageEnglish
Article number233
JournalFrontiers in Immunology
Volume9
DOIs
Publication statusPublished - 2018

Fingerprint

Regulatory T-Lymphocytes
Interleukin-10
Clinical Trials
T-Lymphocytes
Granzymes
Interleukin-17
Hematopoietic Stem Cell Transplantation
Histocompatibility Antigens Class II
Immune System Diseases
T-Lymphocyte Subsets
Myeloid Cells
Lymphocyte Activation
Clinical Protocols
Cell- and Tissue-Based Therapy
Interleukin-4
Genes
Safety
Antigens
Liver

Cite this

Engineered T regulatory type 1 cells for clinical application. / Gregori, S; Roncarolo, MG.

In: Frontiers in Immunology, Vol. 9, 233, 2018.

Research output: Contribution to journalArticle

@article{651fedc6a38d4132a2f3f5db6983dbe3,
title = "Engineered T regulatory type 1 cells for clinical application",
abstract = "T regulatory cells, a specialized subset of T cells, are key players in modulating antigen (Ag)-specific immune responses in vivo. Inducible T regulatory type 1 (Tr1) cells are characterized by the co-expression of CD49b and lymphocyte-activation gene 3 (LAG-3) and the ability to secrete IL-10, TGF-β, and granzyme (Gz) B, in the absence of IL-4 and IL-17. The chief mechanisms by which Tr1 cells control immune responses are secretion of IL-10 and TGF-β and killing of myeloid cells via GzB. Tr1 cells, first described in peripheral blood of patients who developed tolerance after HLA-mismatched fetal liver hematopoietic stem cell transplantation, have been proven to modulate inflammatory and effector T cell responses in several immune-mediated diseases. The possibility to generate and expand Tr1 cells in vitro in an Ag-specific manner has led to their clinical use as cell therapy in patients. Clinical grade protocols to generate or to enrich and expand Tr1 cell medicinal products have been established. Proof-of-concept clinical trials with Tr1 cell products have demonstrated the safety and the feasibility of this approach and indicated some clinical benefit. In the present review, we provide an overview on protocols established to induce/expand Tr1 cells in vitro for clinical application and on results obtained in Tr1 cell-based clinical trials. Moreover, we will discuss a recently developed protocol to efficient convert human CD4 + T cells into a homogeneous population of Tr1-like cells by lentiviral vector-mediated IL-10 gene transfer. {\circledC} 2018 Gregori and Roncarolo.",
author = "S Gregori and MG Roncarolo",
year = "2018",
doi = "10.3389/fimmu.2018.00233",
language = "English",
volume = "9",
journal = "Frontiers in Immunology",
issn = "1664-3224",
publisher = "Frontiers Media S.A.",

}

TY - JOUR

T1 - Engineered T regulatory type 1 cells for clinical application

AU - Gregori, S

AU - Roncarolo, MG

PY - 2018

Y1 - 2018

N2 - T regulatory cells, a specialized subset of T cells, are key players in modulating antigen (Ag)-specific immune responses in vivo. Inducible T regulatory type 1 (Tr1) cells are characterized by the co-expression of CD49b and lymphocyte-activation gene 3 (LAG-3) and the ability to secrete IL-10, TGF-β, and granzyme (Gz) B, in the absence of IL-4 and IL-17. The chief mechanisms by which Tr1 cells control immune responses are secretion of IL-10 and TGF-β and killing of myeloid cells via GzB. Tr1 cells, first described in peripheral blood of patients who developed tolerance after HLA-mismatched fetal liver hematopoietic stem cell transplantation, have been proven to modulate inflammatory and effector T cell responses in several immune-mediated diseases. The possibility to generate and expand Tr1 cells in vitro in an Ag-specific manner has led to their clinical use as cell therapy in patients. Clinical grade protocols to generate or to enrich and expand Tr1 cell medicinal products have been established. Proof-of-concept clinical trials with Tr1 cell products have demonstrated the safety and the feasibility of this approach and indicated some clinical benefit. In the present review, we provide an overview on protocols established to induce/expand Tr1 cells in vitro for clinical application and on results obtained in Tr1 cell-based clinical trials. Moreover, we will discuss a recently developed protocol to efficient convert human CD4 + T cells into a homogeneous population of Tr1-like cells by lentiviral vector-mediated IL-10 gene transfer. © 2018 Gregori and Roncarolo.

AB - T regulatory cells, a specialized subset of T cells, are key players in modulating antigen (Ag)-specific immune responses in vivo. Inducible T regulatory type 1 (Tr1) cells are characterized by the co-expression of CD49b and lymphocyte-activation gene 3 (LAG-3) and the ability to secrete IL-10, TGF-β, and granzyme (Gz) B, in the absence of IL-4 and IL-17. The chief mechanisms by which Tr1 cells control immune responses are secretion of IL-10 and TGF-β and killing of myeloid cells via GzB. Tr1 cells, first described in peripheral blood of patients who developed tolerance after HLA-mismatched fetal liver hematopoietic stem cell transplantation, have been proven to modulate inflammatory and effector T cell responses in several immune-mediated diseases. The possibility to generate and expand Tr1 cells in vitro in an Ag-specific manner has led to their clinical use as cell therapy in patients. Clinical grade protocols to generate or to enrich and expand Tr1 cell medicinal products have been established. Proof-of-concept clinical trials with Tr1 cell products have demonstrated the safety and the feasibility of this approach and indicated some clinical benefit. In the present review, we provide an overview on protocols established to induce/expand Tr1 cells in vitro for clinical application and on results obtained in Tr1 cell-based clinical trials. Moreover, we will discuss a recently developed protocol to efficient convert human CD4 + T cells into a homogeneous population of Tr1-like cells by lentiviral vector-mediated IL-10 gene transfer. © 2018 Gregori and Roncarolo.

U2 - 10.3389/fimmu.2018.00233

DO - 10.3389/fimmu.2018.00233

M3 - Article

VL - 9

JO - Frontiers in Immunology

JF - Frontiers in Immunology

SN - 1664-3224

M1 - 233

ER -