TY - JOUR
T1 - Estimating dose delivery accuracy in stereotactic body radiation therapy
T2 - A review of in-vivo measurement methods
AU - Esposito, Marco
AU - Villaggi, Elena
AU - Bresciani, Sara
AU - Cilla, Savino
AU - Falco, Maria Daniela
AU - Garibaldi, Cristina
AU - Russo, Serenella
AU - Talamonti, Cinzia
AU - Stasi, Michele
AU - Mancosu, Pietro
N1 - Copyright © 2020 Elsevier B.V. All rights reserved.
PY - 2020/8
Y1 - 2020/8
N2 - Stereotactic body radiation therapy (SBRT) has been recognized as a standard treatment option for many anatomical sites. Sophisticated radiation therapy techniques have been developed for carrying out these treatments and new quality assurance (QA) programs are therefore required to guarantee high geometrical and dosimetric accuracy. This paper focuses on recent advances on in-vivo measurements methods (IVM) for SBRT treatment. More specifically, all of the online QA methods for estimating the effective dose delivered to patients were compared. Determining the optimal IVM for performing SBRT treatments would reduce the risk of errors that could jeopardize treatment outcome. A total of 89 papers were included. The papers were subdivided into the following topics: point dosimeters (PD), transmission detectors (TD), log file analysis (LFA), electronic portal imaging device dosimetry (EPID), dose accumulation methods (DAM). The detectability capability of the main IVM detectors/devices were evaluated. All of the systems have some limitations: PD has no spatial data, EPID has limited sensitivity towards set-up errors and intra-fraction motion in some anatomical sites, TD is insensitive towards patient related errors, LFA is not an independent measure, DAMs are not always based on measures. In order to minimize errors in SBRT dose delivery, we recommend using synergic combinations of two or more of the systems described in our review: on-line tumor position and patient information should be combined with MLC position and linac output detection accuracy. In this way the effects of SBRT dose delivery errors will be reduced.
AB - Stereotactic body radiation therapy (SBRT) has been recognized as a standard treatment option for many anatomical sites. Sophisticated radiation therapy techniques have been developed for carrying out these treatments and new quality assurance (QA) programs are therefore required to guarantee high geometrical and dosimetric accuracy. This paper focuses on recent advances on in-vivo measurements methods (IVM) for SBRT treatment. More specifically, all of the online QA methods for estimating the effective dose delivered to patients were compared. Determining the optimal IVM for performing SBRT treatments would reduce the risk of errors that could jeopardize treatment outcome. A total of 89 papers were included. The papers were subdivided into the following topics: point dosimeters (PD), transmission detectors (TD), log file analysis (LFA), electronic portal imaging device dosimetry (EPID), dose accumulation methods (DAM). The detectability capability of the main IVM detectors/devices were evaluated. All of the systems have some limitations: PD has no spatial data, EPID has limited sensitivity towards set-up errors and intra-fraction motion in some anatomical sites, TD is insensitive towards patient related errors, LFA is not an independent measure, DAMs are not always based on measures. In order to minimize errors in SBRT dose delivery, we recommend using synergic combinations of two or more of the systems described in our review: on-line tumor position and patient information should be combined with MLC position and linac output detection accuracy. In this way the effects of SBRT dose delivery errors will be reduced.
U2 - 10.1016/j.radonc.2020.05.014
DO - 10.1016/j.radonc.2020.05.014
M3 - Review article
C2 - 32416282
VL - 149
SP - 158
EP - 167
JO - Radiotherapy and Oncology
JF - Radiotherapy and Oncology
SN - 0167-8140
ER -