Estrogen modulates specific life and death signals induced by LH and hCG in human primary granulosa cells in vitro

Livio Casarini, Laura Riccetti, Francesco De Pascali, Lisa Gilioli, Marco Marino, Eugenia Vecchi, Daria Morini, Alessia Nicoli, Giovanni Battista La Sala, Manuela Simoni

Research output: Contribution to journalArticlepeer-review

Abstract

Luteinizing hormone (LH) and human chorionic gonadotropin (hCG) are glycoprotein hormones used for assisted reproduction acting on the same receptor (LHCGR) and mediating different intracellular signaling. We evaluated the pro-and anti-apoptotic effect of 100 pM LH or hCG, in the presence or in the absence of 200 pg/mL 17β-estradiol, in long-term, serum-starved human primary granulosa cells (hGLC) and a transfected granulosa cell line overexpressing LHCGR (hGL5/LHCGR). To this purpose, phospho-extracellular-regulated kinase 1/2 (pERK1/2), protein kinase B (pAKT), cAMP-responsive element binding protein (pCREB) activation and procaspase 3 cleavage were evaluated over three days by Western blotting, along with the expression of target genes by real-time PCR and cell viability by colorimetric assay. We found that LH induced predominant pERK1/2 and pAKT activation STARD1, CCND2 and anti-apoptotic XIAP gene expression, while hCG mediated more potent CREB phosphorylation, expression of CYP19A1 and procaspase 3 cleavage than LH. Cell treatment by LH is accompanied by increased (serum-starved) cell viability, while hCG decreased the number of viable cells. The hCG-specific, pro-apoptotic effect was blocked by a physiological dose of 17β-estradiol, resulting in pAKT activation, lack of procaspase 3 cleavage and increased cell viability. These results confirm that relatively high levels of steroidogenic pathway activation are linked to pro-apoptotic signals in vitro, which may be counteracted by other factors, i.e., estrogens.

Original languageEnglish
Article number926
JournalInternational Journal of Molecular Sciences
Volume18
Issue number5
DOIs
Publication statusPublished - May 1 2017

Keywords

  • Apoptosis
  • Gonadotropins
  • Granulose
  • hCG
  • LH

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Computer Science Applications
  • Spectroscopy
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint Dive into the research topics of 'Estrogen modulates specific life and death signals induced by LH and hCG in human primary granulosa cells in vitro'. Together they form a unique fingerprint.

Cite this