TY - JOUR
T1 - Evading Pgp activity in drug-resistant cancer cells
T2 - A structural and functional study of antitubulin furan metotica compounds
AU - Nguyen, Tam Luong
AU - Cera, Maria Rosaria
AU - Pinto, Andrea
AU - Lo Presti, Leonardo
AU - Hamel, Ernest
AU - Conti, Paola
AU - Gussio, Rick
AU - De Wulf, Peter
PY - 2012
Y1 - 2012
N2 - Tumor resistance to antitubulin drugs resulting from P-glycoprotein (Pgp) drug-efflux activity, increased expression of the βIII tubulin isotype, and alterations in the drug-binding sites are major obstacles in cancer therapy. Consequently, novel antitubulin drugs that overcome these challenges are of substantial interest. Here, we study a novel chemotype named furan metotica that localizes to the colchicine-binding site in β-tubulin, inhibits tubulin polymerization, and is not antagonized by Pgp. To elucidate the structure-activity properties of this chiral chemotype, the enantiomers of its most potent member were separated and their absolute configurations determined by X-ray crystallography. Both isomers were active and inhibited all 60 primary cancer cell lines tested at the U.S. National Cancer Institute. They also efficiently killed drug-resistant cancer cells that overexpressed the Pgp drug-efflux pump 106-fold. In vitro, the R-isomer inhibited tubulin polymerization at least 4-fold more potently than the S-isomer, whereas in human cells the difference was 30-fold. Molecular modeling showed that the two isomers bind to b-tubulin in distinct manners: the R-isomer binds in a colchicine-like mode and the S-isomer in a podophyllotoxin-like fashion. In addition, the dynamic binding trajectory and occupancy state of the R-isomer were energetically more favorable then those of the Sisomer, explaining the observed differences in biologic activities. The ability of a racemic drug to assume the binding modes of two prototypical colchicine-site binders represents a novel mechanistic basis for antitubulin activity and paves the way toward a comprehensive design of novel anticancer agents.
AB - Tumor resistance to antitubulin drugs resulting from P-glycoprotein (Pgp) drug-efflux activity, increased expression of the βIII tubulin isotype, and alterations in the drug-binding sites are major obstacles in cancer therapy. Consequently, novel antitubulin drugs that overcome these challenges are of substantial interest. Here, we study a novel chemotype named furan metotica that localizes to the colchicine-binding site in β-tubulin, inhibits tubulin polymerization, and is not antagonized by Pgp. To elucidate the structure-activity properties of this chiral chemotype, the enantiomers of its most potent member were separated and their absolute configurations determined by X-ray crystallography. Both isomers were active and inhibited all 60 primary cancer cell lines tested at the U.S. National Cancer Institute. They also efficiently killed drug-resistant cancer cells that overexpressed the Pgp drug-efflux pump 106-fold. In vitro, the R-isomer inhibited tubulin polymerization at least 4-fold more potently than the S-isomer, whereas in human cells the difference was 30-fold. Molecular modeling showed that the two isomers bind to b-tubulin in distinct manners: the R-isomer binds in a colchicine-like mode and the S-isomer in a podophyllotoxin-like fashion. In addition, the dynamic binding trajectory and occupancy state of the R-isomer were energetically more favorable then those of the Sisomer, explaining the observed differences in biologic activities. The ability of a racemic drug to assume the binding modes of two prototypical colchicine-site binders represents a novel mechanistic basis for antitubulin activity and paves the way toward a comprehensive design of novel anticancer agents.
UR - http://www.scopus.com/inward/record.url?scp=84862739117&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84862739117&partnerID=8YFLogxK
U2 - 10.1158/1535-7163.MCT-11-1018
DO - 10.1158/1535-7163.MCT-11-1018
M3 - Article
C2 - 22442310
AN - SCOPUS:84862739117
VL - 11
SP - 1103
EP - 1111
JO - Molecular Cancer Therapeutics
JF - Molecular Cancer Therapeutics
SN - 1535-7163
IS - 5
ER -