Evidence for interaction between human PRUNE and nm23-H1 NDPKinase

Alexandre Reymond, Sara Volorio, Giuseppe Merla, Mai Al-Maghtheh, Orsetta Zuffardi, Alessandro Bulfone, Andrea Ballabio, Massimo Zollo

Research output: Contribution to journalArticlepeer-review


We have isolated a human and murine homologue of the Drosophila prune gene through dbEST searches. The gene is ubiquitously expressed in human adult tissues, while in mouse developing embryos a high level of expression is confined to the nervous system particularly in the dorsal root ganglia, cranial nerves, and neural retina. The gene is composed of eight exons and is located in the 1q21.3 chromosomal region. A pseudogene has been sequenced and mapped to chromosomal region 13q12. PRUNE protein retains the four characteristic domains of DHH phosphoesterases. The synergism between prune and awd(K-pn) in Drosophila has led various authors to propose an interaction between these genes. However, such an interaction has never been supported by biochemical data. By using interaction-mating and in vitro co-immunoprecipitation experiments, we show for the first time the ability of human PRUNE to interact with the human homologue of awd protein (nm23-H1). In contrast, PRUNE is impaired in its interaction with nm23-H1-S120G mutant, a gain-of-function mutation associated with advanced neuroblastoma stages. Consistently, PRUNE and nm23-H1 proteins partially colocalize in the cytoplasm. The data presented are consistent with the view that PRUNE acts as a negative regulator of the nm23-H1 protein. We discuss how PRUNE regulates nm23-H1 protein and postulate possible implications of PRUNE in neuroblastoma progression.

Original languageEnglish
Pages (from-to)7244-7252
Number of pages9
Issue number51
Publication statusPublished - Dec 2 1999


  • NDPK
  • nm 23-H1

ASJC Scopus subject areas

  • Molecular Biology
  • Cancer Research
  • Genetics


Dive into the research topics of 'Evidence for interaction between human PRUNE and nm23-H1 NDPKinase'. Together they form a unique fingerprint.

Cite this