Evolution, role in inflammation, and redox control of leaderless secretory proteins

Roberto Sitia, Anna Rubartelli

Research output: Contribution to journalArticlepeer-review


Members of the interleukin (IL)-1 family are key determinants of inflammation. Despite their role as intercellular mediators, most lack the leader peptide typically required for protein secretion. This lack is a characteristic of dozens of other proteins that are actively and selectively secreted from living cells independently of the classical endoplasmic reticulum-Golgi exocytic route. These proteins, termed leaderless secretory proteins (LLSPs), comprise proteins directly or indirectly involved in inflammation, including cytokines such as IL-1β and IL-18, growth factors such as fibroblast growth factor 2 (FGF2), redox enzymes such as thioredoxin, and proteins most expressed in the brain, some of which participate in the pathogenesis of neurodegenerative disorders. Despite much effort, motifs that promote LLSP secretion remain to be identified. In this review, we summarize the mechanisms and pathophysiological significance of the unconventional secretory pathways that cells use to release LLSPs. We place special emphasis on redox regulation and inflammation, with a focus on IL-1β, which is secreted after processing of its biologically inactive precursor pro-IL-1β in the cytosol. Although LLSP externalization remains poorly understood, some possible mechanisms have emerged. For example, a common feature of LLSP pathways is that they become more active in response to stress and that they involve several distinct excretion mechanisms, including direct plasma membrane translocation, lysosome exocytosis, exosome formation, membrane vesiculation, autophagy, and pyroptosis. Further investigations of unconventional secretory pathways for LLSP secretion may shed light on their evolution and could help advance therapeutic avenues for managing pathological conditions, such as diseases arising from inflammation.

Original languageEnglish
Pages (from-to)7799-7811
Number of pages13
JournalJournal of Biological Chemistry
Issue number22
Publication statusPublished - May 28 2020

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'Evolution, role in inflammation, and redox control of leaderless secretory proteins'. Together they form a unique fingerprint.

Cite this